

Many of the designations used by manufacturers and sellers referred to in this
book are claimed as trademarks.

The authors have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information contained herein.

Copyright © 2022 Gordon Haff.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Gordon Haff
2403 Main Street
Lancaster, MA 01523
bitmason@gmail.com

Copyright to any material included in this book that was wri�en by others remains
with the original author. Any such material is used with the permission of the
copyright holder or is believed to fall under fair use. Certain photographs in this
book are used under the terms of a Creative Commons license and are credited as
required.

This book uses Palatino Linotype and Gill Sans MT typefaces (and Red Hat Display
for the cover).

Second edition, April 2022
First edition, August 2017

About the authors

Gordon Haff (right) is
technology advocate for
Red Hat, the leading
provider of commercial
open source software. He
is a frequent speaker at
customer and industry
events. He writes for a
variety of publications
including The
Enterprisers Project,
opensource.com, and
Connections. His

Innovate@Open podcast includes interviews with a wide range of
industry experts. He’s the author of How Open Source Ate Software
(second edition), published by Apress. He also works on strategy for
Red Hat’s hybrid cloud portfolio and other emerging technology
areas such as Edge/IoT, Quantum, AI, and DevSecOps.

Prior to Red Hat, as an IT industry analyst, Gordon wrote hundreds
of research notes, was frequently quoted in publications such as The
New York Times on a wide range of IT topics, and advised clients on
product and marketing strategies. Earlier in his career, he was
responsible for bringing a wide range of computer systems, from
minicomputers to large Unix servers, to market while at Data
General.

He lives west of Boston, Massachuse�s in apple orchard country
and is an avid hiker, skier, sea kayaker, and photographer. He can
be found on Twi�er as @ghaff and by email at
gordon@alum.mit.edu. His website and blog are at
h�p://www.bitmasons.com.

Gordon has engineering degrees from MIT and Dartmouth and an
MBA from Cornell’s Johnson School.

William Henry (left) has been heavily involved in container
initiatives at Red Hat. He contributed all the manual pages for the
original Docker project and has developed portfolio architectures
and validated pa�erns. Most recently he has been advising on
DevSecOps (security in DevOps) and software risk management.
William joined Red Hat in the office of the CTO, in 2008, focusing on
emerging technologies.

William has over 25 years experience developing distributed
applications and systems and service oriented architectures for both
government and private industry. William's roles have included
engineering, professional services, partner alliances, several
management and director roles, and he owned a startup that was
acquired by a publicly traded company.

He travels extensively, speaking with customers in various
industries about how the latest technology shifts will affect how
they do business. He has been a guest speaker and/or expert
panelist at Red Hat Summit, LinuxCon, ContainerCon, OMG,
JavaOne, TheServerSide, SDI, DevOps Summit, and many other
industry events. He holds both a B.Sc. and M.Sc. in Computer
Science from Dublin City University, Ireland and currently lives in
Monument, Colorado, USA with his family.

Acknowledgements

The authors would like to thank our employer, Red Hat, for its support in
writing this book. Red Hat also contributes to many of the open source
projects that we discuss throughout these pages. However, any opinions in
this book are solely those of the authors and may not represent Red Hat
official views. The Red Hat logo is used on the cover in accordance with
Red Hat social media guidelines but this book is not published by Red Hat.

We thank our many current and former colleagues, both within Red Hat
and elsewhere, without whose insights and efforts this book would not
have been possible. Dan Walsh reviewed and provided feedback on the
sections of this book dealing with container packaging. Ross Turk also
gave us detailed feedback and suggestions.

Colby Hoke wrote the original container and Kubernetes material on
redhat.com that we used in modified form. More broadly, we took
advantage of various material wri�en and/or edited by the Red Hat
content team.

In addition, we’d like to thank the podcast guests whose interviews we
have excerpted for this book.

The cover was designed by Katerina Kozubkova from the Red Hat
Research team in the Czech Republic.

Thanks to James Governor and his RedMonk colleagues whose invitation
to speak at Monkigras was the inspiration for this book.

Photographs are credited throughout this book.

Table of Contents

Introduction 1

In the Beginning 3

Containing 7

Transact 15

The Product 21

Delivery 28

Preservation 50

Operationalizing 60

Inform 81

Creating an Experience 95

Open source: A vision for the future 106

FROM POTS AND VATS TO PROGRAMS AND APPS

Introduction

Packaging was the theme for the MonkiGras conference James
Governor organized for early 2017 in London. James encouraged
ex-analyst colleague Gordon to go “meta” on the topic. (Analysts
love meta and metaphors and historical context.) The result was a
presentation titled “A Short History of Packaging: From the
Functional to the Experiential.”

Light bulb moment.

The overall packaging theme of MonkiGras and the research
Gordon did for his talk turned out to be a great hook for the two of
us to jointly write this book. We work together at Red Hat and have
collaborated on a wide variety of DevSecOps and container-related
activity.

It immediately became clear that protecting contents, conveying
information about contents, communicating legitimacy and trust,
and enabling transactions were all a�ributes common to both how
packaging in the physical world has evolved and the hot topics in
software packaging today. And there was clear overlap with the
container and DevSecOps strategy work that William was focused
on for his day job. This second edition extensively updates the
container-related content to reflect the many changes that have
taken place since the first edition published in 2017.

The meta view of packaging highlights critical tradeoffs.
Unpackaged and unbundled components offer ultimate flexibility,
control, and customization. Packaging and bundling can simplify
and improve usability—but potentially at the cost of constraining
choice and future options.

1

FROM POTS AND VATS TO PROGRAMS AND APPS

Bundling can also create products that are interesting, useful, and
economically viable in a way that fully disaggregated individual
components may not be. Think newspapers, financial instruments,
and numerous telecommunications services examples.

Open source software, composed of malleable bits that an end user
can change and even redistribute, offers near-infinite choice. Yet,
many software users and consumers desire a more opinionated,
bundled, and yes, packaged experience—trading off choice for
convenience.1

This last point is a critical tension around open source software and,
for lack of a be�er umbrella term, “the cloud” in the current era.
Which makes understanding the role that packaging plays not just
important, but a necessity. Ultimately, packaging helps open source
create the convenience and the ease of use that users want without
giving up on innovation, community-driven development, and user
control.

Perhaps most importantly though, this second edition doubles
down on considering the role that different forms of packaging can
play in operationalizing and simplifying the consumption of open
source software as an alternative to cloud-native services specific to
a single provider.

1 As James’ partner at RedMonk, Stephen O’Grady, observed in “The Power of
Convenience.”
h�p://redmonk.com/videos/monki-gras-2017-stephen-ogrady-the-power-of-conven
ience/

2

http://redmonk.com/videos/monki-gras-2017-stephen-ogrady-the-power-of-convenience/
http://redmonk.com/videos/monki-gras-2017-stephen-ogrady-the-power-of-convenience/

FROM POTS AND VATS TO PROGRAMS AND APPS

In the Beginning

If we go back far enough, humans didn’t package anything. Today,
a chimpanzee might use a leaf to collect some water. Various
animals gather food to prepare for a cold winter. But none really
package food or drink in any meaningful way. That’s a pre�y good
indication of the state of affairs in the earliest human
hunter-gatherer societies as well.

As a result, most anything the earliest humans might have collected
had to be consumed both quickly and near to where it was scooped
up or gathered. Without some form of packaging, there was no way
to carry water or grain to a new location against a future need.

Our earliest computer programs weren’t any more packaged and
portable.

ENIAC (Electronic Numerical Integrator And Computer) was the
first general-purpose digital computer. Built at the University of
Pennsylvania during World War II, ENIAC was programmed by a
combination of plugboard wiring and three function tables each of
which had 1200 ten-way switches which were used for entering
tables of numbers.2

As Franz Alt would write in 1972: “It was similar to the plugboards
of small punched-card machines, but here we had about 40
plugboards, each several feet in size. A number of wires had to be
plugged for each single instruction of a problem, thousands of them
each time a problem was to begin a run; and this took several days
to do and many more days to check out.”

2 h�p://www.columbia.edu/cu/computinghistory/eniac.html
3

http://www.columbia.edu/cu/computinghistory/eniac.html

FROM POTS AND VATS TO PROGRAMS AND APPS

ENIAC, the world's first digital computer at the University of Pennsylvania, had six
primary programmers: Kay McNulty, Be�y Jennings, Be�y Snyder, Marlyn Wescoff, Fran
Bilas and Ruth Lichterman. They were initially called "operators." Source: Los Alamos
National Laboratory

Unpackaged code would remain around in various forms for a
perhaps surprisingly long time. Richard Ba�in, who led the design
of the guidance, navigation, and control systems for the Apollo
flights while at the MIT Instrumentation Lab (now named after its
founder Charles Stark “Doc” Draper), once recalled a story about
the core rope memory used in the Apollo Guidance Computer.

4

FROM POTS AND VATS TO PROGRAMS AND APPS

Core rope is a form of read-only memory for computers; the ferrite
cores which stored the electrical signals were “woven” to compose
programs by a team of ex-textile workers and watchmakers working
for Raytheon. It was sometimes nicknamed “Li�le Old Lady”
memory as a result.3

“Sewing” rope core memory for Apollo. Source: Raytheon, from the files of Jack
Poundstone.

One day, the astronauts toured the facility. As Ba�in told it, one of
the goals was to impress upon the production workers that it was

3 h�p://news.bbc.co.uk/2/hi/technology/8148730.stm

5

http://news.bbc.co.uk/2/hi/technology/8148730.stm

FROM POTS AND VATS TO PROGRAMS AND APPS

really important not to make a mistake in their “sewing” lest these
“nice young boys” die.

Programs such as these were one-off affairs, rooted in a single
system with no existence outside of that instance of hardware.

6

FROM POTS AND VATS TO PROGRAMS AND APPS

Containing

It’s hard to say when the first primitive packaging put in an
appearance. It probably consisted of leaves, woven grasses
(primitive baskets), and other readily available materials such as
animal skins. Li�le evidence has been preserved of these soft and
perishable containers.

The oldest examples of po�ery yet discovered are remains found in
the Xianrendong Cave in the Jiangxi Province in China; they go
back about 20,000 years, predating agriculture and what we
generally consider to be civilization.4 Po�ery spread widely in
subsequent millennia and fragments are ubiquitous at archeological
sites around the world. Such po�ery vessels would have been used
for storing, cooking, and serving food—as well as carrying water.

Indeed, potsherds—fragments of po�ery—are widely used by
archaeologists to date and otherwise be�er understand when a
particular site was occupied and by whom. Characteristics such as
temper, form, and glaze help determine the time period and the
technologies that were in use at a given site.

The first wine was probably fermented in a po�ery container,
possibly dating to early Middle Eastern civilizations about 7,000
years ago.5 Hold that thought for now though; we’ll return to
packaging for preservation in due course.

In the case of computers, containing instructions and data originally
took its cue from earlier forms of storing repeated pa�erns.

5 h�p://archive.archaeology.org/9609/newsbriefs/wine.html
4 h�p://science.sciencemag.org/content/336/6089/1696

7

http://archive.archaeology.org/9609/newsbriefs/wine.html
http://science.sciencemag.org/content/336/6089/1696

FROM POTS AND VATS TO PROGRAMS AND APPS

The precursors to software storage

Perhaps the very oldest such storage can be found in the barrel
organ which “owes its name to the cylinder on which the tunes are
pricked out with pins and staples of various lengths, set at definite
intervals according to the scheme required by the music.”6 The
concept dates to the Netherlands in the 15th century but detailed
diagrams of a large stationary barrel-organ worked by hydraulic
power were first published in 1615 by Jehan van Steenken, a Belgian
organ-maker.

You may be familiar with a barrel organ in the guise of a street
instrument played by an organ grinder, or perhaps a trained
monkey, turning a crank.

The most widely cited precursor to today’s data storage came by
way of the silk industry in Lyon France in 1725. It was there that
Basile Bouchon, a textile worker and son of an organ maker, had the
idea to extend the concept of the rotating pegged cylinders used in
automated organs to “program” textile weaving. His innovation
came from realizing that, before fabricating the expensive metal
cylinders used by devices such as barrel organs, the information
content had to first be laid out in paper form.7 For textile weaving,
instructions could just be encoded on paper without subsequently
creating a costly metal version.

Neither Bouchon’s device, nor follow-on refinements by
Jean-Baptiste Falcon and Jacques Vaucanson, were very successful
or effective. But the Jacquard loom, invented by Joseph Marie
Jacquard in 1804, was. Not actually a loom in its own right but a
controlling device for looms, Jacquard’s invention is widely

7 h�p://history-computer.com/Dreamers/Bouchon.html

6

h�ps://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Barrel-organ

8

http://history-computer.com/Dreamers/Bouchon.html
https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Barrel-organ

FROM POTS AND VATS TO PROGRAMS AND APPS

considered to be one of the most important inventions in the history
of textiles.

Jacquard loom in the National Museum of Scotland, Edinburgh. Source: Ad Meskens /
Wikimedia Commons.

Variegated packaging of data

The punched cards used in automated weaving are a direct ancestor
of the punched cards used throughout a large chunk of the history
of computers. Charles Babbage planned to use them in his
never-completed Analytical Engine in the mid-1800s. But they were
first actually used in something like computing machinery when
Herman Hollerith created a punched card tabulating machine to
input data for the 1890 U.S. Census. Hollerith’s company would
combine with three other firms to become IBM, whose 80-column

9

FROM POTS AND VATS TO PROGRAMS AND APPS

punched cards were the ubiquitous way to store data until the 1950s
(when magnetic data storage started to become common) and
remained commonplace for data entry for a couple decades after
that.

Paper tape spools being used for newspaper typese�ing, circa 1976. Source: Gordon Haff.

Punched tape had its own parallel history, most associated with
teletypewriters and various types of specialized computers such as
newspaper typese�ing equipment and computer-controlled
manufacturing systems. The mechanisms required to write and read
a spool of up to one-inch wide paper tape were smaller and simpler
than card keypunch machines and card readers—and thus a be�er
fit for equipment that was typically much lower cost and much
smaller than that associated with mainframe computing.

The first magnetic media dates to the UNISERVO reel-to-reel tape
drive, which was the primary input/output device on the UNIVAC
I, the first commercially-sold computer. It recorded on a thin metal

10

FROM POTS AND VATS TO PROGRAMS AND APPS

strip of half-inch wide nickel-plated phosphor bronze. Shortly
thereafter, IBM introduced ferrous-oxide coated tape similar to that
used in audio recording. This general type of reel-to-reel drive and
media was standard on large computer systems until about the
1990s.

Clockwise from left: Magnetic tape, paper tape, diske�es, and punch cards. Sources:
Punched tape and diske�es, Wikimedia. Punched card and tape drive, IBM.

Smaller, cheaper, and more numerous computers sparked a
demand for smaller removable magnetic storage. (Reel-to-reel
drives were large, complex, and expensive.) In 1972, 3M introduced
Quarter-inch cartridge tape (abbreviated QIC, commonly
pronounced "quick"), variants of which are still (rarely) in use
today. The media is an enclosed package of aluminum and plastic
which holds two tape reels driven by a single belt in direct contact
with the tape.

Over time, other cartridge tape formats included IBM’s 3480 and
7380 families, Digital Linear Tape (DLT) from Digital Equipment
Corporation, Linear Tape-Open (LTO), and DDS/DAT. Cartridge

11

FROM POTS AND VATS TO PROGRAMS AND APPS

tape remains fairly common for large-scale data backup; it’s often
used in conjunction with large robotic tape library systems.
However, they’ve been replaced for many backup applications by
hard disk drives that are optimized for capacity rather than
performance; they’re also often powered-off when not in use to
reduce operational costs.

Floppy disk drives are most associated with the PC era but the
original 8-inch floppy was developed in 1967 at IBM’s San Jose,
California storage development center. It was designed as a reliable
and inexpensive system for loading microcode (essentially the
initialization system) into System/370 mainframes.

Shugart Associates subsequently developed the 5-¼-inch format
diske�e for a desktop word processing system that Wang
Laboratories was developing in the late 1970s. This form-factor was
widely-used in many of the early PCs including the Apple II and
the original IBM PC and its clones. One or two floppy drives often
served as the only persistent storage in these machines although,
once hard disk drives dropped in price, “floppies” were
increasingly relegated to loading software and backing up data.

The floppies used in the IBM PC initially had a capacity of around
360,000 bytes—essentially characters. Later ones had about four
times that capacity. But even that higher capacity would not store a
typical compressed MP3 music file of today, nor a JPEG photo file
from a smartphone.

In 1982, the Microfloppy Industry Commi�ee, a consortium of 23
companies, finally agreed upon a 3½-inch media specification after
years of competing formats saw spo�y use. (It was not actually
“floppy” because it had a hard shell.)

12

FROM POTS AND VATS TO PROGRAMS AND APPS

Some variant of a floppy image serves as a “save” icon in countless
programs and elsewhere. Many people clicking on those icons have
probably never used an actual floppy disc drive.

The floppy wasn’t widely replaced until the adoption of the
compact disc (CD) which had about 600 times the capacity. This
digital optical disc data storage format, released in 1982 and
co-developed by Philips and Sony, was originally developed for
audio where it replaced most vinyl and casse�e tape for music
sales.8 But over about the next ten years, it became the dominant
distribution and sometimes backup medium for PCs. Eventually, a
combination of cheap hard drives, high-bandwidth networks, and
multi-gigabyte flash memory sticks made it largely redundant.9

The higher-capacity DVDs created to distribute movies to
consumers were followed by an even higher capacity optical format,
Blu-Ray; both enjoyed a period of popularity for distributing movies
for home viewing. However, because of an early-on format ba�le
with HD-DVD and initially expensive writable media, by the time
Blu-Ray might have been broadly interesting as a computer data
storage format, it was no longer needed as external hard disks and
online backups became more practical options.

What’s common to all these formats that have do�ed the computing
landscape over the years is that they were a way to contain
information in a digital form. As with retail shelving and physical
packaging, there were a�empts to introduce some degree of

9 CDs were originally a read-only pre-pressed format. However, subsequent
writable versions made them more generally useful in the PC space. For a time, not
the least of those uses was making copies of purchased audio CDs or creating
mixes of music downloaded from the Internet.

8 Vinyl has staged something of a retro comeback and actually exceeded CD sales
in 2021.

13

FROM POTS AND VATS TO PROGRAMS AND APPS

standardization. But standards are always somewhat at war with
the desire to differentiate or to optimize for a particular use.

A modern flash drive sits on an exposed pla�er of a hard drive similar to what you could
have purchased as part of an IBM PC XT in the early 1980s. The flash drive has over 6,000
times the capacity at about 1/100th the price. The size difference of a modern 3.5-inch hard
disk is less stark but the capacity difference can be over 1,000,000:1. Source: Gordon Haff.

Over time, various innovations to use data storage more efficiently
were also developed. For example, especially for uses where storage
performance was less important (and/or where some information in
the original can be discarded), compression allows more data to be
stored on a given size of media.

However, as with other forms of packaging, data storage didn’t
originally exist primarily to make buying or selling software
easier—other than incidentally.

14

FROM POTS AND VATS TO PROGRAMS AND APPS

Transact

As goods increasingly flowed over long distances and trade became
a central part of many economies, traders naturally wanted to
streamline both transporting goods and selling them. New designs
of po�ery containers lent themselves to efficient shipment. One such
container was a twin-handled amphora with a characteristic pointed
base and elongated shape, which facilitated the transport of oil or
wine by ship. The amphorae were packed upright or on their sides
in as many as five staggered layers.

Standardization

Amphorae originally differed considerably in shape and size.
However, during the Roman empire, the weights and measures
used in commerce became more formalized. For example, the
temple of Jupiter in Rome housed a standard model of an amphora
called amphora Capitolina. The capacity of this vessel corresponded
to the principal Roman measure of capacity for fluids, amphora
quadrantal—or just amphora. The measurement derives from the
capacity occupied by 80 pounds of wine, about 10 gallons or 39
liters. By law, the quadrantal was connected to the measures of
length as its volume was a cubic foot.10

Standardization enables more formalized transactions. An amphora
quadrantal might not have signaled anything about the quality of
the wine or olive oil it contained. But it at least communicated a
predictable quantity.

The Romans also used barrels. But barrels in the form we think of
today, made of wooden staves bound by wooden or metal hoops,
were more typical further north in Europe—especially in the
territories of the Gauls and Celts. Until the twentieth century and

10 William Smith, A Dictionary of Greek and Roman Antiquities, 1875
15

FROM POTS AND VATS TO PROGRAMS AND APPS

the introduction of pallet-based packaging systems, barrels were
often the most convenient packaging for shipping all sorts of bulk
goods, from nails to whiskey. Bags and crates were also common
because they were cheaper, but they were not as sturdy, didn’t
protect their contents as well, and could be more difficult to handle.

Barrels of various sizes became standard measures of volume across
a broad swath of industries. Firkin, hogshead, gorda, tun, bu�, and
barrique measures all derive from cask sizes. The practice carried
over when steel drums, including the standard 55-gallon steel
drum, replaced barrels for many applications. The 42-gallon
standard oil barrel volume measurement is still used today
throughout the petroleum industry, even though actual physical
barrels are no longer used to transport oil.

Some of the historical sizes of barrels (casks).

The gallon (galun or galon in Norman) probably dates to about the
time of William the Conqueror, who invaded England in 1066,
although the details get fuzzy prior to the year 1300 or so. The
liquid version of the gallon was the basis of a system for wine and
beer measurements in England. A variety of gallon variants were

16

FROM POTS AND VATS TO PROGRAMS AND APPS

used in Britain and its colonies at different times and for different
purposes. In the early 19th century, the US standardized on the
wine gallon, the volume of which was first legally defined during
the reign of Queen Anne in 1706. However, in 1824, Britain
standardized its gallon by adopting a close approximation to a
different gallon variant, the ale gallon or imperial gallon, which is
about 20 percent bigger than the US version (4.5 vs. 3.8 liters).
Because pints are one-eighth of a gallon in both systems, this is the
historical oddity that gives you four extra ounces of beer when you
order a pint in a London pub compared to a Boston one.

Another application of barrel-like containers such as kegs.

17

FROM POTS AND VATS TO PROGRAMS AND APPS

The shrink-wrapped software era

We see analogs to amphoras and barrels in the way that software
packaging can bring together bits so that they can be sold to and
consumed by a customer in a standardized way. The
shrink-wrapped software era was made possible by the fact that
programs could be wri�en onto standard media from which they
could be then loaded onto a customer’s computer. There are earlier
examples of software being delivered on magnetic tape to business
users, but selling software in volume to individual consumers
brought an even greater need to simplify the delivery of software
from the manufacturer to the retailer and from the retailer to the
end-user.

It’s difficult to identify the first company to sell software that wasn’t
also hawking hardware (which is to say, the first Independent
Software Vendor (ISV)). However, Cincom Systems—founded in
1968—is a good candidate. It sold what appears to be the first
commercial database management system not to be developed by a
system maker like IBM. Fun fact: Not only is Cincom still extant as a
private company in 2022 but one of its founders, Thomas Nies, is
the CEO.

Over time, pure-play or mostly pure-play software companies
packaging up bits and selling them became the dominant way by
which customers acquired most of their software. ISVs like
Microsoft selling closed-source proprietary software even became
major suppliers of the operating systems and other “platform”
software that historically were supplied by vendors as part of a
bundle with their hardware.

Linux distributions

In the world of open source software, distributions brought together
the core operating system components, including the kernel, and

18

FROM POTS AND VATS TO PROGRAMS AND APPS

combined them with the other pieces, such as the utilities,
programming tools, and web servers needed to create a working
environment suitable for running applications. Although it wasn’t
the first Linux distribution, Slackware, released by Patrick
Volkerding in 1993, was the first that can reasonably be considered
well-known. Over the next decade, the number of distributions
exploded although only a handful were ever sold commercially. In a
2003 analyst report, Gordon wrote that in addition to the major
commercial distributions from Red Hat and SUSE:

There are a lot of Linux distros out there, ranging from the
whimsical to the serious, from the general-purpose to those that
are specialists in some function such as real-time computing or
for some geographic region such as Asia-Pacific. There’s
Debian, Slackware, Conectiva, Lindows, Mandrake,
SCO/Caldera, Red Flag Linux, and Turbolinux, to say nothing
of the literally hundreds of other special-purpose Linux
distributions including Bootable Business Card (designed to be
booted from a business-card type CD), ChainSaw Linux (for
video editing), Xbox Linux (to turn a Microsoft Xbox game
console into a Linux computer), UltraPenguin (for SPARC and
UltraSPARC), YellowDog Linux (for PowerPC), spyLinux (fits
on a single floppy), and the initially alarming and recursively
acronymic JAILBAIT.

Distributions were a recognition that an operating system kernel
and even the kernel plus a core set of utilities (such as those that are
part of GNU in the case of Linux) aren’t that useful by themselves.

Commercial open source subscriptions, such as Red Hat Enterprise
Linux, further extend the idea of distributions by incorporating
support, security fixes, hardware and software certifications, legal
protections, and other things that customers value. This is the next
step to creating a more complete experience for buyers through

19

FROM POTS AND VATS TO PROGRAMS AND APPS

packaging. It’s also part of an overall trend to streamline the path
from developer to the user. What analyst Stephen O’Grady calls the
“power of convenience.” Making it easy for users to meet some
business need through software is a central aspect of how
packaging and software intersect.

20

FROM POTS AND VATS TO PROGRAMS AND APPS

The Product

Fred Brooks is best known for writing
The Mythical Man Month, a series of
essays reflecting on the development
of the operating system for IBM’s
System/360 mainframe which began in
the late-1960s. What everyone
remembers from that book is the
adage that adding more people to a
late project makes it even later for
reasons of ramp up time,
communication overhead, and the
inability to divide up many tasks.
Hence, the book’s title.

Programming Systems Products

However, The Mythical Man Month kicks off with a different
discussion: namely the distinction between a Program and a
Programming Systems
Product. From Brooks’
perspective, evolving the
Program into a “truly useful
object” required evolving it
along two dimensions, as
shown in this figure from
his book.

In the first dimension the
program becomes a
programming product, a

21

FROM POTS AND VATS TO PROGRAMS AND APPS

program that can be run. This involves tasks like testing,
documentation, maintenance, and generalization to a range of
inputs. In the second dimension, the program becomes a
programming system: “a collection of interacting programs,
coordinated in function and disciplined in format, so that the
assemblage constitutes an entire facility for large tasks.”

Brooks estimated that costs increased by about 3 times along each of
these dimensions, resulting in a useful product costing about 9
times the money and effort that went into the original program.

It’s probably worth noting that this discussion is very much
flavored by the large system, waterfall development model in which
it was rooted. Nonetheless, we see echoes today in humorous
aphorisms such as the ninety-ninety rule: “The first 90 percent of the
code accounts for the first 90 percent of the development time. The
remaining 10 percent of the code accounts for the other 90 percent of
the development time.” (A�ributed to Tom Cargill of Bell Labs.)

Products are a form of packaging.

Products aggregate. This is similar in concept to Brooks’
programming system. In many cases, people prefer to purchase
products that include all the parts and dependencies that they need
to use a product. There’s a reason that the old Christmas morning
“ba�eries not included” trope was not intended as positive
commentary (and has become largely a thing of the past).

Furthermore, finished products often aggregate a prescriptive bundle
of parts. There are certainly cases where buyers want to exercise
maximum control over individual components. But, more
commonly, they’re looking for someone else to have done the work
of researching and sourcing parts that are to be used together.

22

FROM POTS AND VATS TO PROGRAMS AND APPS

Source: The Internet (unknown).

Beyond aggregation

Products generally also go beyond aggregating parts to integrating
them. An automobile is not a box of parts. It’s a fully integrated
assembly that’s sold as a complete product. Customers may be
offered some options. (The automotive industry is notorious for
using option packages to bundle things that many customers want
with things that they might not otherwise buy.) However, whatever
the specifics, almost no packaged product just throws a bunch of
parts in a box. Rather, it constructs and presents a new thing out of
an often complicated web of component supply chains.

23

FROM POTS AND VATS TO PROGRAMS AND APPS

Brooks’ programming product dimension applies even when the
nature of the final good means there’s “some assembly required.”
Testing, instructions, support, and (for some types of products)
updates are all part of delivering a packaged product to a customer.

Ikea very much sells complete packaged products even if the buyer
needs to assemble them. In fact, its packaging is central to both its
identity and its business model. For example, the European
Logistics Association noted that: “In order to lower logistics costs
and increase efficiency in its transportation and warehousing
operations, IKEA started an internal competition to reduce
unnecessary air in their product packaging. This ‘Air hunting
competition’ focused on removing as much air as possible from
packaging and thereby increasing true product volume during
transportation and storage.”

We see aspects of creating both programming systems and
programming products in the open source software world.

Turning open source into products

Entire new categories of software are open source by default, in part
because of the success of the development model. Open source
underpins the infrastructure of some of the most sophisticated
web-scale companies, like Facebook and Google. Open source
stimulates many of the most significant advances in the worlds of
cloud, big data, and artificial intelligence. Furthermore, as new
computing architectures and approaches rapidly evolve for cloud
computing, for big data, and for edge computing and the Internet of
Things (IoT), it’s also becoming evident that the open source
development model is extremely powerful because of how it allows
innovations from multiple sources to be recombined and remixed in
powerful ways.

24

FROM POTS AND VATS TO PROGRAMS AND APPS

But the huge amount of technological innovation happening around
open source can be something of a double-edged sword. On the one
hand, it creates enormous possibilities for new types of applications
running on dynamic and flexible platforms. At the same time,
channeling and packaging the rapid change happening across a
plethora of open source projects isn’t easy—and can end up being a
distraction from the business goals of a company that’s just using
open source software to achieve some objective.

In some respects, you can think of many open source projects as
programs in Brooks’ parlance. They embody a set of capabilities but
they’re not always fully fleshed out in the ways that let customers
depend on them for critical needs.

Commercial open source subscriptions are about creating
programming system products. In other words, they make
community open source technologies more usable and supportable
by enterprise IT. This usually involves working “upstream” to
engage with open source communities and influence technology
choices in ways that are important to the users of that software. This
takes advantage of the strengths of open source development while
maintaining technology expertise to provide fast and
knowledgeable product support.

Part of this process is also selecting which upstream projects are in a
state that’s appropriate for a given customer use. For some uses, this
means prioritizing stability and maturity. Other uses are a be�er
match for a rapid development and release cycle that provides the
latest technology on current hardware platforms.

Al Gillen, at industry analyst firm IDC, noted in an interview that:
“As we go up the [software] stack, customers still see value
associated with commercialization, so a company that will take your
project and make it something that is consumable will provide the

25

FROM POTS AND VATS TO PROGRAMS AND APPS

support. The reason why that's so valuable is that [customers do]
not have to have the expertise on staff.”

Surveys show this value as well. Red Hat’s 2022 The State of
Enterprise Open Source11 report showed enterprise open source
software usage predicted to climb from being 29% of their software
at the time of the survey to 34% in two years. Community open
source was forecast to climb too but by a more modest 3 points from
21% to 24%. During the same period, proprietary software was
expected to drop from 45% to 37%. The respondents also
highlighted a variety of enterprise open source benefits but,
tellingly, higher quality software, be�er security, and the ability to
safely leverage open source technologies—all a�ributes we associate
with solid software products generally—were all in the top six.

Not just support

It’s worth mentioning at this point that commercial open source
often gets pigeonholed as being about “support,” which in turn
conjures up an image of support staff at call centers waiting for a
telephone call or email. That’s a part of it of course.

But subscriptions also provide access to knowledge about using
products more generally that goes beyond support in the event of a
problem. It can include automated access to knowledge repositories,
product documentation, and other resources. This sort of
self-service access is often faster and easier than opening a support
case.

Commercial open source products also typically include updates
and upgrades through a defined product life cycle. This is
particularly important when security vulnerabilities happen.
During the Shellshock and Heartbleed security incidents, for

11 h�ps://www.redhat.com/en/enterprise-open-source-report/2022
26

https://www.redhat.com/en/enterprise-open-source-report/2022

FROM POTS AND VATS TO PROGRAMS AND APPS

example, Red Hat customers received the knowledge, patches, and
applications needed to verify their exposure and successfully
remediate potential issues within hours of the bugs being made
public. Subscription products can also carry legal protections and
certification agreements with other vendors.

It can even include access to the experts who work with upstream
communities on a daily basis in order to solve a problem or
prioritize a feature on the roadmap.

As Fred Brooks wrote back in 1975, this packaging makes the
difference between a program and a system product that’s generally
useful for business.

27

FROM POTS AND VATS TO PROGRAMS AND APPS

Delivery

We’ve now arrived at a packaged good, perhaps a complex
packaged good, which can be sold and used in a supportable way.
But we need to deliver it efficiently.

The container ship metaphor

There’s a powerful metaphor for this in the physical world—indeed
so powerful and useful (if somewhat flawed as metaphors are wont
to be), that many tech folks are a bit tired of hearing about it by
now.

Container ship MSC Oscar, first visit in Ro�erdam. Source: kees torn (MSC OSCAR &
SVITZER NARI) CC BY-SA 2.0, via Wikimedia Commons

The shipping container, as described by Marc Levinson in The Box:
How the Shipping Container Made the World Smaller and the World
Economy Bigger, radically changed the economics of shipping the
goods we purchase and use every day. Without the shipping
container, the globalization of goods would never have
happened—at least not at the scale it has.

28

FROM POTS AND VATS TO PROGRAMS AND APPS

Containers have been around in various forms since at least the
1800s, beginning with the railroads. In the United States, the
container shipping industry’s genesis is usually dated to Malcom
McLean in 1956. However, for about the next twenty years, many
shipping companies used incompatible sizes for both containers and
the corner fi�ings used to lift them. This in turn required multiple
variations of equipment to load and unload containers and
otherwise made it hard for a complete logistics system to develop.

But around 1970, standard sizes and fi�ings and reinforcement
norms were developed (with all the political jostling between the
incumbents that you’d expect). This points to the important role that
standards can play. Without the standardization of the shipping
container, it would have effectively been just another type of box
rather than the component at the heart of an international
intermodal12 delivery system.

Existing infrastructure also influences the design of this system.

Individual forty-foot long containers are about the maximum size
that can be transported by truck.

The size of container ships is largely constrained by the width and
depth of the Panama and Suez Canals, as well as length. A
“Panamax” (or, now, New Panamax or Neopanamax) container ship
is the maximum size that can go through the Panama Canal; an
Ultra Large Container Vessel (ULCV) is the largest that can go
through the Suez Canal.13

13 The “Suezmax” term is sometimes used but mostly to refer to oil tankers.

12 Intermodal means that two or more different modes of transportation are
involved. For example, a (typically) 40-foot long container can ride on a container
ship, flatcar railroad rolling stock, or semi-tractor-trailer truck, all without
unloading the contents of the container.

29

FROM POTS AND VATS TO PROGRAMS AND APPS

In a totally different context, there’s a good argument that the
Segway, a much ballyhooed self-balancing “personal transportation
vehicle,” failed, not so much because of price or poor design, but
because it wasn’t a good fit with either existing sidewalks or roads
(which also inhibits widespread bicycle use in many American
cities). Packaging systems are most effective when they fit within
existing constraints and infrastructure—or at least can play off
them.

As important as standards in the adoption of containers were
changes to the labor agreements at major ports. When containers
were first introduced, existing labor contracts negated much of their
economic benefit by requiring excess dockworkers or otherwise
requiring processes that involved more handling than was strictly
necessary. Because of both new labor agreements and
infrastructure, containerization allowed the Port Newark-Elizabeth
Marine Terminal to largely eclipse the New York and Brooklyn
commercial port. Making the best use of packaging systems can
require making changes to processes and workflows.

The container embodies a lot of interesting lessons for how
technologies evolve more broadly—and how everything old is new
again. How does this apply to software packaging?

The rise of software containers

Some of the core technologies underpinning (software) containers
are nothing particularly new.

The idea behind what we now call container technology first
appeared in 2000 as a way of partitioning a FreeBSD Unix system
into multiple subsystems, aka “jails.” Jails were developed as safe
environments that a system administrator could share with multiple
users inside or outside of an organization. The intent was that,
within a jail, software ran in a modified environment. It had access

30

FROM POTS AND VATS TO PROGRAMS AND APPS

to most of the usual system services but was walled in so that it
couldn’t escape and compromise other users and tasks. Jails weren’t
widely used and methods for escaping the jailed environment were
eventually discovered.

In 2001, an implementation of an isolated environment made its
way into Linux, by way of Jacques Gélinas’ VServer project. As
Gélinas put it, this was an effort to run “several general purpose
Linux servers on a single box with a high degree of independence
and security.” Once this foundation was set for multiple controlled
userspaces in Linux, pieces began to fall into place to form what is
today’s Linux container.14

Like other types of software partitions (including hardware
virtualization), a container presents the appearance of being a
separate and independent operating system—a full system,
really—to anything that’s inside. But, like the workload groups that
containers extend, there’s only one actual copy of an operating
system kernel running on a physical server.

The operating system causes the applications running in each
container to believe that they have full, unshared access to their very
own copy of that operating system when, in fact, they’re sharing the
services of a single host operating system. (By contrast, hardware
virtualization, normally just referred to as virtualization, requires
that each partition include an individual copy of a guest operating
system.) This also points to why the Linux operating system is so
integral to Linux containers; container performance, isolation, and
security all depend on inherent operating system capabilities.

14 Other container implementations included Virtuozzo from SWsoft/Parallels and
Sun Microsystems’ Solaris. The Solaris 10 implementation is probably what most
popularized the "containers" term, which was Sun’s marketing name for isolating
workloads within an operating system. Solaris containers first appeared in a beta
release in February 2004. (Sun’s technical docs used the "zones" moniker for the
same thing.) IBM also introduced containers in AIX which were unique in that they
allowed for moving running containers between systems.

31

FROM POTS AND VATS TO PROGRAMS AND APPS

Containers were initially viewed as a more lightweight isolation alternative to hardware
virtualization. But it’s their ability to package applications and their dependencies that has
triggered much of the current interest. Source: Illuminata.

From a technical perspective, containers build off the concept of a
process, an instance of a computer program that is being executed
by one or many threads. It contains the program code and its
associated activity. Although a process is not truly an independent
environment, it does provide basic isolation and consistent
interfaces. For example, each process has its own identity and
security a�ributes, address space, copies of registers, and
independent references to common system resources.

The original BSD Unix jails took advantage of chroot, a Unix/Linux
operation that changes the root directory for the current running
process. One can see how this benefits Linux containers. While
depending on the underlying kernel, a completely different root file

32

FROM POTS AND VATS TO PROGRAMS AND APPS

system, including the Linux distribution libraries and binaries, can
be located at the changed root.

Over time, more technologies combined to make this isolation
approach a reality. Control groups (cgroups) is a kernel feature that
controls and limits resource usage for a process or group of
processes. Cgroups use systemd, an initialization system that sets
up the userspace and manages its processes, to provide greater
control over these isolated processes. These technologies, while
adding overall control for Linux generally, were also the framework
for how environments could be separated successfully within a
single copy of an operating system.

Advancements in user namespaces were the next step. Namespaces
isolate and virtualize system resources in a group of processes. They
essentially allow changes within one container to be made without
affecting other containers on the system.

User namespaces allow per-namespace mappings of user and group
IDs. In the context of containers, this means that users and groups
can have privileges for certain operations inside a container without
the need to give them those same privileges outside the container.
For example, an administrator can give someone uid 0 (root15) in the
container without giving them uid 0 on the underlying system. This
is similar to the concept of a jail, but with the added security of
further isolation of processes, rather than jails’ concept of a
modified environment.

In the Transact chapter, we discussed operating system
distributions. For the purposes of a container discussion, the
operating system can be broken down into two areas.

15 i.e. Essentially complete control.
33

FROM POTS AND VATS TO PROGRAMS AND APPS

First, there’s the operating system kernel which schedules and
manages running programs, or processes, and the resources
associated with those processes.

However, an operating system distribution, whether Fedora,
Ubuntu, Red Hat Enterprise Linux, or something else, also provides
added libraries and applications. For example, almost all Linux
distributions include the GNU packages, a widely-used set of
utilities and other programs.

For containers to run on a host they only require the host’s kernel,
often with the addition of modules such as SELinux for additional
security, and other tools. An application running in the container
may also have dependencies on specific packages from a specific
distribution. Those packages must then be made part of the
container image. Glibc, the GNU C language library needed to build
the kernel and other software from source code, is an example of a
common package dependency in many containers.

Containers: From isolating to packaging

So far we’ve considered containers as an isolation mechanism.
However, containers were largely ignored when they were viewed
solely through the lens of partitioning workloads, losing out to
virtualization for a variety of reasons. This changed when
containers became about packaging as well.16

By providing an image that also contains an application’s
dependencies, a container can be made into a packaging construct
that is portable and consistent as it moves from development, to
testing, and finally to production.

16 KubeVirt is a project that allows virtual machines to be managed as if they were
effectively containers.

34

FROM POTS AND VATS TO PROGRAMS AND APPS

Imagine you’re developing an application. You do your work on a
laptop and your environment has a specific configuration. Other
developers may have slightly different configurations. The
application you’re developing relies on that configuration and
assumes specific files are present. Meanwhile, your business has test
and production environments which are standardized and have
their own configurations and their own sets of supporting files.

You want to emulate those environments locally as closely as
possible, but without the work of recreating the server
environments manually. So, how do you make your app work
across these environments, pass quality assurance, and get your app
deployed without massive headaches, rewriting, and break-fixing?

The answer: Containers. The container that holds your application
also holds the necessary configurations (and files) so that you can
move it from development, to test, to production—without nasty
side effects.

That’s a simplified example, but Linux containers can be applied in
many different ways to problems where portability, configurability,
and isolation are needed. This is true whether running on-prem, in a
public cloud, or a hybrid of the two.

How did the industry move from containers as an approach for
isolation to an approach for packaging?

Docker Inc. came onto the scene (by way of dotCloud) with their
eponymous container technology, initially released as open source
in 2013, which combined existing Linux LXC container tooling with
further-improved tools for developers, increasing the
user-friendliness of containers.

Its most important innovation was in the area of packaging
container images. The docker project’s image layering technique

35

FROM POTS AND VATS TO PROGRAMS AND APPS

helped standardize the way Linux container images are built and
shipped. Docker subsequently moved control over the
standardization effort for container image formats and the container
runtime to the Open Container Initiative (OCI).

The OCI, which is under the Linux Foundation, launched in 2015
“for the express purpose of creating open industry standards
around container formats and runtime.” This project is focused on
determining and se�ing specifications. The first two such specs
were Runtime and Image.17

The Runtime Specification sets open standards around a filesystem
bundle, the structure of supporting files and artifacts in a container,
and how that bundle is unpacked by a compliant runtime. Basically,
the spec exists to make sure containers work as intended and that
all supporting assets are available and in the correct places. The
reference implementation of the runtime specification is runC.18

A container runtime automates deploying the application (or
combined sets of processes that make up an app) inside this
container environment. That is, the container runtime starts and
stops the container process with the stipulated storage and network
resources it requires.

OCI’s Image Specification defines how container images are created.
This creation outputs “an image manifest, a filesystem serialization,
and an image configuration.”

18 h�ps://github.com/opencontainers/runc

17 The history of Docker Inc., the docker project, and relationships among various
industry players is both fairly involved and not very relevant for our purposes. I’ll
use the OCI containers moniker here but you can read that as equivalent to what
many call docker containers.

36

https://github.com/opencontainers/runc

FROM POTS AND VATS TO PROGRAMS AND APPS

Container tools use an image-based deployment model. This makes
it easy to share an application, or set of services, together with
dependencies across multiple environments.

These specifications work together to define the contents of a
container image and those dependencies, environments, arguments,
and so forth necessary for the image to be run properly. As a result
of these standardization efforts, the OCI has opened the door for
many other tooling efforts that can now depend on stable runtime
and Image specs. For example, Red Hat has been involved heavily
in container registry and container building projects such as
Podman, Skopeo, and Buildah. (Of which, more later.)

One of the interesting dynamics with container standardization
today is that it reflects an industry that’s more willing to adopt
standards in areas where gratuitous differences don’t actually
differentiate but do hurt adoption.

Chris Aniszczyk is the CTO of the Cloud Native Computing
Foundation and he put it this way in a 2017 interview:

People have learned their lessons, and I think they want to
standardize on the thing that will allow the market to grow.
Everyone wants containers to be super‑successful, run
everywhere, build out the business, and then compete on the
actual higher levels, sell services and products around that.
And not try to fragment the market in a way where people
won't adopt containers, because they're scared that it's not
ready.19

19

h�p://bitmason.blogspot.com/2017/02/podcast-open-container-initiative-with.html
37

http://bitmason.blogspot.com/2017/02/podcast-open-container-initiative-with.html

FROM POTS AND VATS TO PROGRAMS AND APPS

A detour into applications

We’ve been talking infrastructure. The plumbing. But it doesn’t
really make sense to talk about containerized infrastructure unless
we also at least touch on the application architectures that are going
to use those containers.

For a time, it was popular to talk about legacy applications and
cloud-native applications using the “pets vs. ca�le” metaphor.

This metaphor is usually a�ributed to Bill Baker, then of Microsoft.
The idea is that traditional workloads are pets. If a pet gets sick, you
take it to the vet and try to nurse it back to health. New-style,
cloud-native workloads, on the other hand, are ca�le. If the cow gets
sick, well, you get a new cow.

Pets and ca�le roughly corresponded to the Systems of Record and
Systems of Engagement taxonomy proposed by consultant Geoffrey
Moore (of Crossing the Chasm fame).20 The former were stateful, big,
long-lived, scale-up, and managed/maintained at the individual
machine level. The la�er were assumed to be stateless, small,
transitory, scale-out, and managed at the level of the entire
application (with individual instances destroyed and recreated in
the event of a problem).

As an initial pass at distinguishing between traditional transactional
apps and those designed along more cloud-native lines, the
metaphor isn’t a bad one. “Ants” may be a be�er fit than “ca�le” in
that it captures the idea that individual service instances are not
only disposable but they work together cooperatively to perform
tasks. In any case, the distinction between long-running mutable
instances and short-lived disposable ones is broadly relevant.

20 h�ps://en.wikipedia.org/wiki/Crossing_the_Chasm
38

https://en.wikipedia.org/wiki/Crossing_the_Chasm

FROM POTS AND VATS TO PROGRAMS AND APPS

That said, both the metaphor and the binary distinction break down
if you stare too hard at them. For example, many stateless web-tier
applications require persistent data storage in their back-end.
Nonetheless, the idea that apps are generally shifting to a more
services-oriented modular approach is spot-on.

Purists will argue that microservices inherently embody concepts
like single-function services built and operated by small (“two
pizza”)21 teams, independence from the implementation of other
functions, and communication only through public interfaces. But,
whether or not “microservices” apply in the most narrow sense (or
are even the best approach) in a given situation, they point to a
general architecture of modularity, reuse, and optimization at the
level of the individual function.

This is a great match for container infrastructure. In fact,
microservices plus containers represent a general shift to delivering
applications through modular services that can be reused and
rewired to perform new tasks.

One of the key ideas behind microservices is that, instead of large
monolithic applications, application design will increasingly use
architectures composed of small, single-function, independent
services that communicate through network interfaces. This
approach is be�er aligned with agile development practices and
reduces the unintended effects associated with making changes in
one part of a large monolithic program.

Writing apps for containers

Traditional Linux containers use an initialization system that can
manage multiple processes. This means entire applications can run
as one—effectively just as if they were in a virtual machine or on a

21 Two pizzas can feed the whole team.
39

FROM POTS AND VATS TO PROGRAMS AND APPS

“bare metal” physical server. However, modern OCI-compliant
Linux container technology encourages breaking down applications
into their separate processes and provides the tools to do so.

Each container image file is made up of a series of layers. These
layers are combined into a single image. A layer is created when the
image changes. Each layer is a set of filesystem changes. Layers do
not have configuration metadata such as environment variables or
default arguments; those are properties of the image as a whole
rather than any particular layer.

Each layer can be isolated into an archive and each of these archives
combined into a single archive along with metadata on the layering.
Later these layers can be unarchived onto a layered filesystem like
overlayfs or similar.

Two primary tools, Buildah and Podman, are used to work with
OCI images. A third, Skopeo, performs various operations on
container images and image repositories.

Buildah specializes in building OCI images. Buildah's commands
replicate all of the commands that are found in a Dockerfile. This
allows building images with and without Dockerfiles while not
requiring any root privileges. The flexibility of building images
without Dockerfiles allows for the integration of other scripting
languages into the build process.

Podman specializes in all of the commands and functions that help
you to maintain and modify OCI images, such as pulling and
tagging. It also allows you to create, run, and maintain those
containers created from those images. Podman functions as a
command line replacement for the docker daemon without itself
requiring a manager daemon to remain running.

40

FROM POTS AND VATS TO PROGRAMS AND APPS

The image layers are reused when building a new container image.
This makes the build process fast and has tremendous advantages
for organizations applying DevOps practices like continuous
integration and deployment (CI/CD). Intermediate changes are
shared between images, further improving speed, size, and
efficiency. Inherent to layering is version control. Every time there’s
a new change, you essentially get a built-in change-log.

Orchestration

A single shipping container is just a box. It’s the whole
transportation logistics system built around that box that makes it
interesting. A software container by itself can be useful for an
individual developer. Just an OCI-compliant container runtime and
its associated tools is still very good at managing single containers.
But for production applications, you need something more.

When you start using more and more containers and containerized
apps, broken down into hundreds of pieces, management and
orchestration can get tricky. Eventually, you need to take a step
back and group containers to deliver services—such as networking,
security, and telemetry—across your containers.

Furthermore, because containers are portable, it’s important that the
management stack that’s associated with them be portable as well.

That's where orchestration technologies come in. One open source
project in particular, Kubernetes, has come to dominate in this
space.

Kubernetes is an open source platform that automates Linux
container operations. It eliminates many of the manual processes
involved in deploying and scaling containerized applications. In
other words, you can cluster together groups of hosts running
Linux containers, and Kubernetes helps you easily and efficiently

41

FROM POTS AND VATS TO PROGRAMS AND APPS

manage those clusters. These clusters can span hosts across public,
on-prem, and hybrid clouds.

Kubernetes was originally developed and designed by Joe Beda,
Brendan Burns, and Craig McLuckie at Google. Google had been
using a similar platform, Borg, to manage containers internally. The
lessons learned from using it became the primary influence behind
the Kubernetes technology. The seven spokes in the Kubernetes
logo refer to the project’s original name, “Project Seven of Nine.”
Google donated the Kubernetes project to the newly formed Cloud
Native Computing Foundation (under the Linux Foundation) in
2015.

Orchestration allows you to interact with groups of containers at the
same time, scheduling and implementing container registry,
networking, storage, security, and telemetry services. Once you
scale to a production environment and multiple applications, it's
clear that you need multiple, co-located containers working together
to deliver the individual services. This significantly multiplies the
number of containers in your environment and as those containers
accumulate, the complexity also grows.

Kubernetes provides an orchestration layer on top of containers.. Source: Red Hat.
42

FROM POTS AND VATS TO PROGRAMS AND APPS

Kubernetes fixes a lot of common problems with container
proliferation by structuring containers together into a ”pod.” Pods
add a layer of abstraction to grouped containers, which helps you
schedule workloads and provide necessary services—like
networking and storage—to those containers. Other parts of
Kubernetes help you load balance across these pods and ensure you
have the correct number of containers running to support your
workloads.

Kubernetes provides a platform to schedule and run containers on
clusters of physical or virtual machines. More broadly, it helps you
fully implement and rely on a container-based infrastructure in
production environments. And to do so in a way that automates
many operational tasks.

Because of the standardization of containers through OCI,
technologies like Kubernetes can manage containers be�er and
automate critical tasks. At a high level, these include orchestrating,
scaling, and maintaining the health of apps and containers running
across distributed environments. Kubernetes can also mount and
add storage to run apps that require persistent access to a specific
set of data. Kubernetes is also a�uned to modern service
deployment practices—for example, the use of blue-green
deployments to introduce and test new features without affecting
users.22

For most enterprise deployments, even Kubernetes by itself
probably isn’t enough. There are plenty of open source projects out
there looking to work with Kubernetes. In fact, surveying all the
projects that complement Kubernetes can make you feel a bit like a

22 The blue-green deployment approach does this by ensuring you have two
production environments, which are as identical as possible. At any time one of
them, let's say blue for example, is live. As you prepare a new release of your
software you do your final stage of testing in the green environment.
h�ps://martinfowler.com/bliki/BlueGreenDeployment.html

43

https://martinfowler.com/bliki/BlueGreenDeployment.html

FROM POTS AND VATS TO PROGRAMS AND APPS

kid in a candy store. There’s monitoring, security scanning, service
meshes, CI/CD tools, registries, and more. It can be tempting to
jump right in, download some software, and start building a
container platform. Sure, it all looks a bit complex but how hard can
it be?

Pre�y hard it turns out. Which is at least a major contributor to
Kubernetes’ reputation for being complicated. Many who went the
do it yourself (DIY) route also came to the realization that their
organization is not in the business of building custom container
platforms.

Red Hat OpenShift is an example of a complete container
application platform. It runs on-prem or managed in a public cloud.
It integrates OCI-compliant containers and Kubernetes and
combines them with a variety of other components needed for an
enterprise product, such as monitoring, dashboards, continuous
integration/continuous delivery tooling, logging, distributed
tracing, developer tools, and more.

An enterprise Kubernetes distribution is a good way to maintain
some choice—for example, by choosing where you physically run
your Kubernetes cluster or clusters—while having someone whose
job it is to build a container platform make prescriptive choices,
perform integration testing, and choose sensible defaults. You still
have the option to customize as needed, but an integrated,
supported, and documented product takes a lot of the friction out of
ge�ing started developing and deploying cloud-native applications.

Kubernetes runs on top of an operating system (Red Hat Enterprise
Linux CoreOS, for example) and interacts with pods of containers
running within the operating system on the nodes (physical systems
or virtual machines). The Kubernetes control plane takes the
commands from an administrator (or DevSecOps team) and relays

44

FROM POTS AND VATS TO PROGRAMS AND APPS

those instructions to the compute nodes. This handoff works with a
multitude of services to automatically decide which node is best
suited for the task. It then allocates resources and assigns the pods
in that node to fulfill the requested work.

From an infrastructure perspective, Kubernetes doesn’t change the
fundamental mechanisms of container management. But control
over containers now happens at a higher level, providing be�er
control without the need to micromanage each individual container
or node. And all this enables not just containerizing applications
and services but deploying and managing the entire assembly at
scale.

Manufacturing the Delivery Process

Ultimately, the goal is to efficiently and repeatedly deliver
standardized and tested capabilities in a repeatable way, a process
that transformed manufacturing in the physical world over a period
of about 200 years beginning in the late 18th century.

It started with standardization. French General Jean-Baptiste
Vaque�e de Gribeauval promoted standardized weapons in what
became known as the Système Gribeauval after it was issued as a
royal order in 1765. Standardized boring allowed cannons to be
shorter without sacrificing accuracy and range because of the tighter
fit of the shells. It also enabled standardization of the shells.

Gribeauval provided patronage to Honoré Blanc, who a�empted to
implement the Système Gribeauval at the musket level. By about
1778, Honoré Blanc began producing some of the first firearms with
interchangeable flint locks, although these were still carefully made
by craftsmen. Blanc demonstrated in front of a commi�ee of
scientists that his muskets could be fi�ed with flint locks picked at
random from a pile of parts.

45

FROM POTS AND VATS TO PROGRAMS AND APPS

Example of a sailing block. Source: GK Bloemsma, Wikimedia, CC BY-SA.

Brunel and Maudsley’s sailing blocks brought process to
standardization. Marc Brunel, a pioneering engineer, and Maudslay,
the founding father of machine tool technology, collaborated on
plans to manufacture block-making machinery; the proposal was
submi�ed to the British Admiralty who agreed to commission their
services. By 1805, a dockyard had been fully updated with the
revolutionary, purpose-built machinery at a time when products
were still built individually with different components. A total of 45
machines were required to perform 22 processes on the blocks,
which could be made into one of three possible sizes. The machines
were almost entirely made of metal thus improving their accuracy
and durability. The machines would make markings and

46

FROM POTS AND VATS TO PROGRAMS AND APPS

indentations on the blocks to ensure alignment throughout the
process.

One of the many advantages of this new method was the increase in
labor productivity due to the reduced number of workers needed to
manage the machinery. Richard Beamish, assistant to Brunel's
engineer son, Isambard Kingdom Brunel, wrote: “...So that ten men,
by the aid of this machinery, can accomplish with uniformity,
celerity and ease, what formerly required the uncertain labour of
one hundred and ten.”

However, it was World War II that truly brought fully standardized
and optimized infrastructure to manufacturing. In Freedom’s Forge,
author Arthur Herman tells the story of how Charles Sorensen of
Ford led the construction of the Willow Run manufacturing
complex in the early years of World War II. The plant was
optimized for the mass production of aircraft, especially the B-24
Liberator heavy bomber. It was the largest manufacturing plant in
America because that’s what Sorensen’s assembly line demanded.
He didn't try to squeeze the process into the hangar in San Diego
where bomber construction had previously taken place and he
introduced processes that resulted in much greater component
consistency. At Willow Run, Ford built half of the total B-24s, which
holds the distinction of being the most produced heavy bomber in
history.23

23 At least that’s the cleaned-up story. In reality, Willow Run had many startup and
labor problems and Sorensen was replaced by Mead Bricker in 1943. Consolidated
Aircraft also continued to manufacture in San Diego throughout World War II,
employing as many as 45,000 workers. Nonetheless, once it got running properly,
Willow Run was producing up to 650 B-24s per month and made 9,000 total.

47

FROM POTS AND VATS TO PROGRAMS AND APPS

B-24 bombers on the Willow Run assembly line.

The delivery of modern applications using agile development
processes, is very much tied to the modern manufacturing thinking
that was originally most associated with the Toyota Production
System (TPS). Key concepts underpinning this modern approach to
manufacturing came from W. Edwards Deming, an American who
is generally credited with championing the field of statistical
process control, building on earlier work by Walter Shewhart.
Ironically, Deming was mostly ignored by American manufacturers
and ended up being most credited with being an inspiration for
what became known as the Japanese post-war economic miracle of
1950 to 1960. Toyota built on Deming’s ideas and incorporated
concepts such as lean manufacturing, kaizen (continuous

48

FROM POTS AND VATS TO PROGRAMS AND APPS

improvement), just-in-time inventory,24 build-to-order, and systems
thinking (“The Toyota Way”). The goal was to make a process as
flexible as necessary without stress or "muri" (overburden) since this
generates "muda" (waste). It’s a long-term philosophy that
emphasizes understanding of underlying concepts. However, it also
incorporates the idea that tactical improvements can be valuable as
well. There’s a significant element that’s about organization,
incentives, and even culture.

We see echoes of all this throughout the DevOps and DevSecOps
approaches used to deliver cloud-native applications using such
platforms. Core DevOps principles such as maintaining a single
source repository, automating all the things, making builds
self-testing, and providing transparency into the code and the
process would all be familiar to anyone designing or running a
manufacturing system.

At the same time, many of these changes can also be thought of as
cultural shifts: craftwork to factories, ad hoc observation to
statistical quality control, reduced cycle times, and the
empowerment of assembly workers. In essentially all cases, they
represent a decisive and deliberate shift from business as usual. We
largely agree with JP Morgenthal when he argues that "There is no
single agreed-upon standard of what culture looks like when
DevOps adoption is complete."25 However, cultural inputs like
transparency, tolerance of failure, collaboration, leadership, and
appropriate incentives are all clearly important.

25 h�ps://opensource.com/business/15/2/devops-culture-needs-be-created

24 It’s worth noting that one significant motivation for a system like TPS was
inventory reduction—which doesn’t really apply to software. Nonetheless, many
aspects of the overall philosophy remain highly relevant.

49

https://opensource.com/business/15/2/devops-culture-needs-be-created

FROM POTS AND VATS TO PROGRAMS AND APPS

Preservation

A package can also play a direct role in protecting and preserving
its contents. Some of this is essentially inherent to its function. Just
the act of containing can help to shield contents from the elements
and containing liquids is the essential first step towards making
preservation processes such as fermentation possible.

As Gary Cross and Robert Proctor write in Packaged Pleasures:

Nature is ephemeral—at least that part that grows and dies.
When plucked, a plant will spoil or simply disappear…
Containerization liberated us from nature, at least a li�le. This
is most obvious with food. Neolithic peoples beginning ten
millennia or so ago learned to preserve and pack their
nourishment, saving it from decay and also creating thereby
entirely new kinds of foods—and sensory delights—in the
process. Fermented drink is one notable outcome.

Containerization allowed foods (and drink) to become portable
while also being saved to use another day in the future.

Napoleon is often quoted (whether or not he actually did) to have
said "An army marches on its stomach.” In 1795, the French military
offered an award of 12,000 francs (about $50,000 today) to anyone
who could devise a practical method for food preservation for
armies on the march. A confectioner and chef in Paris, Nicholas
Appert, began experimenting with ways to preserve foodstuffs,
including soups, vegetables, juices, dairy products, jellies, jams, and
syrups. He placed the food in glass jars, sealed them with cork and
sealing wax, and placed them in boiling water—a process which, the
method of sealing the container aside, would seem familiar to

50

FROM POTS AND VATS TO PROGRAMS AND APPS

anyone making jam at home today.26 Appert won the prize,
patented his invention, and established a business to preserve a
variety of food in sealed bo�les.

The history of cans is a bit more convoluted.

Another Frenchman, Philippe de Girard, reputedly demonstrated
canned foods at the Royal Society in London in 1810 a few years
after Appert’s invention. The story is a bit murky27 but it seems that
Englishman Peter Durand took out a patent for this preservation
process which could use tinplate cans, among other containers.
Solder was used for sealing the can seams.28

In 1812, Durand sold his patent to two Englishmen, Bryan Donkin
and John Hall, who refined the process and product, and set up the
world's first commercial canning factory on Southwark Park Road,
London. By 1813 they were producing their first tin canned goods
for the Royal Navy.

However, although Girard is often credited with inventing the tin
can, some form of tinned iron cylinders appears to have been used
by the Dutch navy as early as the mid-1700s. Records show that
from 1772 to 1777, while quelling a revolt in what was then Dutch
Guiana in South America, the navy was supplied with roast beef
packaged in this way. Before the end of the eighteenth century, the
Netherlands had a small industry that preserved salmon by
canning.29

The first can openers weren’t patented until 1855 in England and
1858 in the United States. This must have made for an interesting 40
years or so given the instructions like the "Cut round the top near

29 Food Packaging: Principles and Practice, Third Edition, Gordon L. Robertson
28 h�p://www.canmaker.com/online/frequently-asked-questions/
27 h�p://www.bbc.com/news/magazine-21689069

26 Lance Day, Ian McNeil, ed. (1996). Biographical Dictionary of the History of
Technology.

51

http://www.canmaker.com/online/frequently-asked-questions/
http://www.bbc.com/news/magazine-21689069

FROM POTS AND VATS TO PROGRAMS AND APPS

the outer edge with a chisel and hammer" to open a can that have
been passed down to us.

The reality is that early cans were specialized; the can itself could
weigh more than the enclosed food. It wasn’t until near the
beginning of the twentieth century that food in cans became a
common consumer item. The American Can Company was founded
in 1901 and was soon producing 90 of the tin cans30 used in the
United States.

Reducing the weight, bulk, cost, and (most recently) environmental
impact of protective packaging has long been an ongoing theme.
There’s also been a widespread recognition that packaging intended
primarily to solve some problem for a manufacturer or retailer, such
as reducing theft, shouldn’t get in the way of the consumer’s
experience. Blister packs made of thermoformed plastic are one
particularly notorious example.

Online retailer Amazon has even offered “frustration free
packaging” as an alternative for a wide range of products. It’s a
good bet that if someone markets an alternative to your product as
frustration free, you’re probably doing something wrong.

Preservation and the supply chain

Preservation can also intersect with the supply chain through which
a product is delivered and the manner in which a product is
consumed. Frozen food is a case in point.

Clarence Birdseye is generally considered to be the founder of the
modern frozen food industry. In 1925, after a couple of false starts,
he moved his General Seafood Corporation to Gloucester,

30 The “tin can” term reflects the nearly exclusive use of tinplate steel for cans until
the second half of the twentieth century. It combined the physical strength and
relatively low price of steel with the corrosion resistance of tin.

52

FROM POTS AND VATS TO PROGRAMS AND APPS

Massachuse�s. It was there that he used his newest invention, the
double belt freezer, to freeze fish quickly using a pair of
brine-cooled stainless steel belts. This and other Birdseye
innovations centered on the idea that flash freezing meant that only
small ice crystals could form and, therefore, cell membranes were
not damaged.

Clarence Birdseye is considered to be the founder of the modern frozen food industry.

A couple of points are worth highlighting. The first is that frozen
food depends on a reliable supply chain between the original source
of the food and the consumer that can maintain the right
temperature for the package. The second is that, in the course of
preserving it, food can also be processed in ways that make
consuming it more convenient. (For be�er or worse. Frozen
vegetables are easier to be positive about than TV dinners.)

Nor is the task of food preservation complete when a truck leaves
the factory loading dock. Packaging and supply chains need to

53

FROM POTS AND VATS TO PROGRAMS AND APPS

reliably protect, secure, and preserve the overall integrity of
contents until they’re in a consumer’s hands and even beyond.

Food supply chains are a topic of active industry discussion and are
one of the target uses of enterprise distributed ledger technology
(a.k.a. blockchain) projects, such as the IBM Food Trust.31

Securing the software supply chain

With the increased use of open source software generally, open
source code is finding its way into more and more
applications—proprietary as well as open source. For example in its
“2020 Open Source and Risk Analysis Report,” Synopsys audited
1,253 applications and found that 99% of them included open source
components and that, overall, 70% of the total code was open
source.

That’s good, right? Open source really is eating software.

However, there’s a flip side to that reality. Synopsys also found that
82% of codebases had components more than four years out of date
and 88% of the codebases had components with no development
activity during the last two years.

The issue isn’t that companies (and individuals) are making use of
open source components. It’s that, in many cases, they’re not
managing that use. We see similar pa�erns for container images
downloaded from public repositories and for applications that are
simply no longer maintained.

Open source code can be a source of security vulnerabilities if you
use unsigned software or deploy open source code in an insecure
manner.

31 h�ps://www.ibm.com/blockchain/solutions/food-trust
54

https://www.ibm.com/blockchain/solutions/food-trust

FROM POTS AND VATS TO PROGRAMS AND APPS

These a�acks take many forms, including hijacking software
updates and injecting malicious code into legitimate software and
have been on the rise.

The lesson though shouldn’t be to not use open source software.
The same problem exists with proprietary libraries that haven’t
been updated.

Rather, one lesson should be to know the answer to questions such
as whether a software component is being maintained, who is
maintaining it at what level of activity, and who is ve�ing it for
trustworthiness? Another is to obtain software directly from
trustworthy sources. And still another is to actively scan your
software throughout its life cycle with automated tools that can
detect unpatched known vulnerabilities, insecure configurations, or
other factors that an a�acker could take advantage of.

Enter DevSecOps

In the software world, the packaging of applications and services
can protect and secure their contents throughout their life cycle.

The DevOps term was supposed to connote breaking down the wall
between developers and operations teams. But quite a few people
started arguing that historically very siloed security should be
explicitly part of the term as well, even if others felt it was already
part of it implicitly. Hence, DevSecOps put in an appearance.

DevSecOps is a way for organizations to extend some of the
practices and processes from DevOps to continue rapid
development and release cycles while simultaneously addressing
security concerns. And doing so without the overhead and delays
for which security has often been blamed.

55

FROM POTS AND VATS TO PROGRAMS AND APPS

Specifically, the goal of DevSecOps is to take DevOps and secure
every aspect of the application development pipeline, delivery, and
operations. This includes integrating and automating appropriate
security tools, methods, and culture throughout the entire
application life cycle. It also requires combining DevOps expertise
with security expertise with a common goal of providing the
optimal balance of security, speed to market, and stable, reliable
applications in production.

One ongoing challenge of DevSecOps with respect to both
applications in general and cloud-native applications in particular is
that security is a multi-faceted problem. There’s scanning for known
vulnerabilities in source code. There’s confirming that current
versions of application dependencies like libraries are used to build
the application. There’s checking that applications running in
production remain up-to-date. There’s searching for vulnerabilities
in containers that encapsulate applications together with other
components they need. There’s making sure that the application
platform, toolchain, and developer clients are themselves secure.
There’s checking for misconfigurations. The list goes on.

Real-time monitoring and enforcement of policies can not only
address performance and reliability issues before the problems
become serious, but they can also detect and mitigate potential
compliance issues. Automation reduces the amount of sysadmin
work that is required. However, it’s also a way to document
processes and reduce error-prone manual procedures. Human error
is consistently cited as a major cause of security breaches and
outages.

Operational monitoring and remediation needs to continue
throughout the life cycle of a system. It starts with provisioning. As
with other aspects of ongoing system management, maintaining
complete reporting, auditing, and change history is a must.

56

FROM POTS AND VATS TO PROGRAMS AND APPS

A common theme of DevSecOps is “shift left,” which is to say
implement security practices and scans earlier, when it’s cheaper to
catch problems, rather than later.

With traditional long-lived application instances, maintaining a
secure infrastructure also meant analyzing and automatically
correcting configuration drift to enforce the desired host end-state.
This can still be an important requirement. However, with the
increased role that large numbers of short-lived “immutable”32

instances play in cloud-native environments, it’s equally important
to build in security in the first place. For example, you may establish
and enforce rule-based policies around the services in the layers of a
containerized software stack.

But the need for security policies and plans doesn’t end even when
an application is retired. Data associated with the application may
need to be retained for a period or personally identifiable
information (PII) may need to be scrubbed depending upon
applicable regulations and policies.

The very simplicity of containers can turn into a headache if IT
doesn’t ensure that all software running in a container comes from
trusted sources and meets required standards of security and
supportability.

It’s much like a large and busy port with thousands of containers
arriving each day. How does a port authority manage the risk of
allowing a malicious or illegal container into the port? By looking at
which ship it arrived in and its manifest, by using sniffer dogs and
other detection equipment, and even by physically opening and
scanning the contents.

32 With lightweight services, the general model is to shutdown and restart instances
that have a problem or need to be updated rather than changing the running
instance as was historically the usual approach.

57

FROM POTS AND VATS TO PROGRAMS AND APPS

The verification of shipping container contents is a public policy
concern because many inspection processes are largely manual and
don’t scale well. Fortunately, verifying the contents of software
containers and packages is more amenable to automation and other
software-based approaches.

Most of the vulnerable images in public repositories aren’t
malicious; nobody (probably) put the vulnerable software there on
purpose. Someone just created the image in the past but after it was
added to the registry, new security vulnerabilities were found.
However, unless someone is paying a�ention and can update those
images, the only possible outcome is a registry that contains a large
number of vulnerable images. If you just pull a container from one
of these registries and place it into production, you may unwi�ingly
be introducing insecure software into your environment.

Many software vendors help secure the supply chain by digitally
signing all released packages and containers and distributing them
through secure channels. Ongoing scans provide additional
protection. For example, StackRox, now Red Hat Advanced Cluster
Security for Kubernetes, integrates with CI/CD pipelines and image
registries to provide continuous image scanning and assurance. By
shifting security left, vulnerable and misconfigured images can be
remediated within the developer environment with real-time
feedback and alerts.

The early 2020s have seen a heightened interest in software supply
chain security due to well-publicized vulnerabilities such as the
severe one in log4j, a ubiquitous piece of software used to log
activities in a wide range of systems, discovered in late 2021.
Software supply chain security was also one of the topics covered in
a US federal government cybersecurity directive earlier that year.

58

FROM POTS AND VATS TO PROGRAMS AND APPS

What’s next in operationalizing?

This chapter has delved into some specific tools for keeping
software for going “bad” over time. But what about some
approaches to keeping software humming along in general, perhaps
even if you don’t want to shoulder all the burden yourself?

59

FROM POTS AND VATS TO PROGRAMS AND APPS

Operationalizing

The last chapter began to touch on an ongoing relationship between
buyer and seller in terms of both user experience and ongoing
commercial relationships. This one will focus on what needs to
happen to get that relationship started and keep it going over time
because that’s at the heart of a central tension in the IT industry
today.

What happens when you get it home?

Earlier in this book we riffed on frustrating packaging and missing
ba�eries on Christmas morning. These are relatively trivial
examples of how a manufacturer can make it harder to actually use
a product.

But just about anything that stands in the way of gaining utility or
pleasure from whatever is in the box is a candidate. Are the
assembly instructions hard to follow? Is the (perhaps only available
via download) manual inscrutable? Do you have to puzzle through
se�ing up a device rather than it holding your hand through the
onboarding process?

Any of these scenarios stand in the way of a happy user. Indeed,
make it too hard and that user may just give up and return your
product in disgust.

The unboxing experience isn’t just experiential. It’s about
transforming an inert object into an object that satisfies some desire
or need of the user.

Furthermore, it’s not just about ge�ing a consumer or a user started
on Day 1.

60

FROM POTS AND VATS TO PROGRAMS AND APPS

Consumers can have a number of different types of ongoing
relationships with brands and products. For example, Susan Fornier
has extensively researched brand relationships through the lens of
personal relationships starting in the 1990s. Brand relationships are
clearly central to some companies’ business. Take Apple for
example. But many companies have brand relationships with their
customers to greater or lesser degrees.

For our purposes here we’re going to focus on more pragmatic
aspects that follow the sale.

Many day-to-day purchases are pre�y transactional. If I buy a
recharging cable for my phone, the Day 2 experience and beyond is
pre�y much about the cable doing what I bought it to do for
whatever I consider a reasonable lifetime.

However, a complex long-lived product like an automobile is mostly
about the experience after the sale. Is the vehicle reliable? Does any
necessary service at the dealer go smoothly?

This is even more so the case with software. The unboxing
experience, which is to say its installation and configuration, can be
complicated enough. But as software changes via updates through
its life cycle and as it handles new tasks or interacts with other
programs, there are many opportunities for things to go wrong.
And open source software has historically often made tradeoffs that
make it do even less well than software overall. Which brings us to
the central tension.

The central tension

On the one hand, there’s the innovation taking place in open source
in all its sometimes unruly and rough-around-the-edges glory. On
the other hand, there are the generally more packaged, curated, and
polished offerings from what we’ll call generically “the cloud”

61

FROM POTS AND VATS TO PROGRAMS AND APPS

whether as complete Software-as-a-Service applications or as more
discrete cloud services such as storage.

This isn’t a new tension. Just a li�le over a year after Amazon, still
the leader in public cloud services today, announced their first
iteration of Amazon Web Services (AWS) in 2006, Gordon wrote a
research note titled “The Cloud vs. Open Source.”

Some of the concepts within AWS had existed previously. S3
resembled the storage service providers of the dot-com era. EC2
bore more than a passing resemblance to Sun Microsystem’s
much-hyped Sun Grid Compute Utility—although that was
based on physical servers rather than AWS’ virtual
infrastructure. But Amazon succeeded where those others had
not through a combination of scale, low pricing, embracing new
lightweight Web protocols, and an aggressive focus on
continually rolling out new services and new capabilities.

It probably didn’t hurt either that AWS rolled out around the dawn
of the second great Internet boom. This one distinguished itself
from the first one in part by far less investor appetite for huge
outlays of up-front capital spending on rooms full of computers,
disks, and networking gear. In such a startup climate, the
availability of cheap pay-per-use compute capacity was extremely
a�ractive.

Some of that writing seems a bit off today. It didn’t really foresee
the degree to which cloud service models would inspire whole new
categories of computer software. (Including containers which, at
that time, were mostly just a li�le-used alternative to hardware
virtualization.)

62

FROM POTS AND VATS TO PROGRAMS AND APPS

The tension between the freedom and flexibility of open source and the convenience of the
cloud. Source: Illuminata.

But it did get a few things right that remain relevant.

First (and probably controversially at the time) was that it
downplayed the importance of a flavor of open source licensing that
requires modifications to be contributed back to the commons
under some circumstances. Gordon wrote:

Such a worldview implicitly assumes that copyleft33 is the only
reason that Open Source users contribute back their
enhancements. Copyleft may or may not have played a major
role in the rise of Open Source. Certainly, the GPL has long

33 A copyleft license requires that if changes are made to a program’s code, and the
changed program is distributed outside an organization, the source code
containing the changes must likewise be distributed. Permissive licenses don’t.

63

FROM POTS AND VATS TO PROGRAMS AND APPS

been the most common Open Source license, used by Linux,
GNU, and many others. However, the BSD license—which does
not require that code changes be made available—is also widely
used. It’s an interesting historical debate whether the ultimate
impact of Linux was far greater than the BSD operating system
because of license differences, or because of other reasons—of
which there were many. In any case, Open Source does not
begin and end with the GPL and copyleft.

And, indeed we’ve seen a general trend toward permissive licenses
such as BSD, MIT, and the Apache Software License34 and very
limited take-up of licenses that close some cloud software delivery
“loopholes” such as the Affero GPL. This shift reflects less concern
about preventing free-riders and more concern about growing
communities.35

The Eclipse Foundation’s Ian Skerre� puts it this way: “I claim all
these projects use a permissive license to get as many users and
adopters, to encourage potential contributions. They aren’t worried
about trying to force anyone. You can’t force anyone to contribute to
your project; you can only limit your community through a
restrictive license.”

Which brings us to Gordon’s next point which remains germane:

Indeed, focusing too narrowly on Open Source in a Cloud
Computing world is counterproductive. Source code may
ma�er, or it may not, depending upon the circumstances. But

35 The past few years have seen a contentious thread around software licenses that
are mostly about preventing cloud providers from offering services based on open
source projects or otherwise trying to prevent them from competing with open
source project sponsors. This is mostly peripheral to the topic at hand and, in any
case, out of scope for this book. The topic is covered at length in Gordon’s How
Open Source Ate Software second edition (Apress, 2021).

34 Ma�hew Asle� of market researcher 451 Group wrote in 2011 that: “2010 was the
first year in which there were more companies formed around projects with
non-copyleft licenses than with strong copyleft licenses.”

64

FROM POTS AND VATS TO PROGRAMS AND APPS

it’s the many other aspects of Open Source development
(community, extensibility) or Open Source principles
(portability of data, open formats) that ma�er far more.

Open source code allows organizations to collaborate with each
other. It’s not sufficient. It’s an enabler but collaboration happens
because openness exists across many dimensions within an
environment where people can work together.

Without a viable, independent community, it’s hard to realize the
collaborative potential of open source. Delivering the most
innovation means having the right structures and organization in
place to fully take advantage of the open source development
model.

There’s no single approach to fostering communities. The best
approach in any given case to engaging with and governing a
community will depend on the nature of the project. Who is
contributing? What are the project’s goals? What business or
licensing constraints are there? These and many other factors will
affect governance structure, as well as copyright, trademark, and
licensing decisions.

Open standards, or protocols and formats that are moving toward
standardization, can also be important. Earlier we saw the example
of the OCI. Chris Aniszczyk told Gordon that “I think the industry
has changed over the years. Open source is more prevalent. People
have learned a lot of lessons around lock‑in, and they don't want to
repeat the mistakes. The visualization fiasco with the format [is] a
painful memory in a lot of people. People are worried about paying
the ‘VMware tax.’ Lots of lessons have been learned.”

Portability is closely tied to, and in many ways a product of, aspects
of openness such as this. Without being able to deploy on a choice
of infrastructure, you don’t have portability. Portability requires

65

FROM POTS AND VATS TO PROGRAMS AND APPS

thinking about how applications and data can be moved from one
place to another and assessing the impact of such a move. Multiple
technologies can come into play, although, ultimately, it’s about
making business decisions regarding the degree to which you’re
tied or not tied to a specific vendor or provider in some manner.

At the same time, there’s a general recognition that you need to
choose when and where the time and place are right for
standardization and when it makes sense to let approaches compete
or details to sort themselves out. This is the messy bazaar aspect of
open source (to use Eric Raymond’s Bazaar vs. Cathedral
metaphor).

Clouds are the ultimate cathedrals. They contain. They prescribe.
They package. They’re the ultimate bundle.

Open source, by contrast, is the ultimate force for unbundling. Mix
and match. Modify. Tinker. Move.

66

FROM POTS AND VATS TO PROGRAMS AND APPS

Preserving the freedom to tinker.

But the current era also values packaging and experience more than
in the past. And that’s the challenge that open source adherents
must collectively address in a world where public clouds don’t
always offer portability and interoperability—but do offer more
convenience instead.

Ge�ing prescriptive

Enterprise open source products based on open source projects do a
great deal to simplify the use of a product such as documentation
and support. They also aim to reduce risk through timely security
updates and certifications. But one of the most valuable things that a
product can bring to the table is curation.

67

FROM POTS AND VATS TO PROGRAMS AND APPS

Red Hat OpenShift Container Platform provides a good study point.
As we’ve seen, complementary to containers and a necessity at scale
is Kubernetes, which provides the orchestration needed for
production deployments. OpenShift is often described as an
enterprise Kubernetes distribution.

As we’ve also seen, Kubernetes also effectively serves as the nexus
for a vast number of cloud-native projects that have grown up
around it in areas such as registries, security and compliance,
networking, storage, service meshes, and CI/CD. Thus the new
foundation for IT is container-optimized Linux, Kubernetes, and an
integrated suite of other tools targeting developers, operators, and
other individuals interacting with the platform.

But which ones? There are so many of them. And the upstream
projects don’t always play nice with each other.

That’s where curation and integration work comes in. Most
companies just want to use a container platform rather than
assemble one from community projects just like most companies
before them didn’t want to be Linux kernel engineers. They just
want platforms that work.

Now, curation does imply exclusion. Just as a specialty retailer will
decide that only certain products meet its standards and the needs
of its customer base, so too will an enterprise open source software
vendor decide only certain projects are sufficiently mature, have a
large enough community developing them, and are a match with
the requirements of its customers.

The degree of curation is a balancing act. Some users value someone
else making informed decisions on how a product should work,
which can make it much easier to use and easier to adopt, but you
do lose some flexibility. Others prefer flexibility because they have
edge cases that they want to address. In general, all products will be

68

FROM POTS AND VATS TO PROGRAMS AND APPS

curated to a certain degree, but on-prem software tends to lean
towards flexibility while hosted services are usually a more
opinionated offering.

Ge�ing started

Before ge�ing to how we can more efficiently and effectively
operate our own software systems over time, we first need to
consider the initial installation experience.

Especially at the level of the individual developer, containers by
themselves can help a great deal in this regard. As we’ve seen,
containers package programs with their dependencies, such as
libraries, and isolate that bundle from other bundles running on the
same system. Therefore, even if one program needs version X of
some library and another program needs version Y, there’s still no
conflict.

However, as the complexity of an environment increases, so does
the number of containers and the knowledge needed to configure
everything correctly.

Kubernetes can manage and scale stateless applications, such as
web apps, mobile backends, and API services, without requiring
any additional knowledge about how these applications operate.
The built-in features of Kubernetes are designed to easily handle
these tasks.

However, stateful applications, like databases and monitoring
systems, often require additional domain-specific knowledge that
Kubernetes doesn’t have. It needs this knowledge in order to scale,
upgrade, and reconfigure these applications.

Kubernetes operators encode this specific domain knowledge into
Kubernetes extensions so that it can manage and automate an

69

FROM POTS AND VATS TO PROGRAMS AND APPS

application’s life cycle. Such a Kubernetes operator is a method of
packaging, deploying, and managing a Kubernetes application. It
helps deploy a Kubernetes application on Kubernetes and manages
it using the Kubernetes API (application programming interface)
and kubectl tooling.

A Kubernetes operator is effectively an application-specific
controller that extends the functionality of the Kubernetes API to
create, configure, and manage instances of complex applications on
behalf of a Kubernetes user. It builds upon the basic Kubernetes
resource and controller concepts, but includes domain or
application-specific knowledge to automate the entire life cycle of
the software it manages.

In Kubernetes, controllers of the control plane implement control
loops that repeatedly compare the desired state of the cluster to its
actual state. If the cluster's actual state doesn’t match the desired
state, then the controller takes action to fix the problem.

An operator is a custom Kubernetes controller that uses custom
resources (CR) to manage applications and their components.
High-level configuration and se�ings are provided by the user
within a CR. The Kubernetes operator translates the high-level
directives into the low level actions, based on best practices
embedded within the operator’s logic.

After Day 1

The ongoing management aspect is important. Running software
isn’t a Day 1 and done experience. It has to continue to run
throughout its life cycle, perhaps in environments that place greater
demands on it than in a typical test environment. Furthermore,
software products don’t run in isolation and real world
architectures can get complicated. However, we often do see

70

FROM POTS AND VATS TO PROGRAMS AND APPS

repeatable pa�erns. Documenting these is another form of flexible
curation.

Finally, it doesn’t need to be a choice between a cloud-native service
that’s specific to a single large cloud provider or an open source
on-prem deployment. Open source-based managed services that are
portable across multiple clouds are a third option.

Operate First

That we still talk about the open source development model is telling.
That language emphasizes developers and other participants in that
virtuous cycle, such as users and businesses. Thus, fundamentally,
the focus is on the code. But there’s also a dawning recognition that
just writing code in a vacuum isn’t sustainable for most significant
projects.

The a�ention to code is understandable. Even when proprietary
software was nearly the only game in town, vendors were focused
on delivering packaged bits to users with maybe some consulting
on the side to get it running. Open source software freed users from
a vendor’s proprietary IP and let them harness the innovation in a
community extending beyond a single company. But it didn’t really
change the software delivery model. Users were still mostly obliged
to operate the software by themselves.

What to do?

As Marcel Hild, who researches AIOps—essentially augmenting IT
operations with AI tools, starting with data exploration—in Red
Hat’s Office of the CTO puts it:

There’s a principle in development called Shift Left, which
means that we should involve testing really early in the
development cycle—in other words, moving left in the process.

71

FROM POTS AND VATS TO PROGRAMS AND APPS

This is already done with unit and integration tests. No line of
code gets merged if it does not pass the tests. But what about
operations?

At Red Hat we coined the term Operate First for this. The idea is
similar to Upstream First, where we strive to get every line of
code into an upstream project before we ship it in a product. In
Operate First, we want to run the software in an operational
context by the group that develops the software. And since we
develop mainly in open source communities, this extends our
open cloud to another group of people, the engineering
community.

The very authors of the code can be asked in an incident ticket
about a misbehaving piece of the cloud. This not only increases
the probability of ge�ing the incident closed quickly, but it also
exposes the software developer to the operational context of
their brainchild. Maybe they come back later and just watch
how their software is being used to make future design
decisions based on the operations. The next level would be to try
out new features in bleeding-edge alpha versions of a particular
service and get a real workload instead of fake test data.

Operations is becoming as important, and sometimes more
important, than code. Software-as-a-Service and public cloud
providers have increasingly offloaded the operational burden of
software from users. This is a challenge for open source software.
While the open source development model is powerful, the value of
software lies in operationalizing it so that a user can be productive
with it.

You can think of Operate First36 as a concept, philosophy, and vision
to improve open source software through open sourcing operations.

36 h�ps://www.operate-first.cloud/
72

https://www.operate-first.cloud/

FROM POTS AND VATS TO PROGRAMS AND APPS

Concretely, Operate First is a project to define, build, and improve
the open source hybrid cloud through learning and developing code
and practices in an open production community cloud. By
incorporating operational experience into open source software
development, Operate First extends development to include
operating, testing, and proving code in a production
environment—and simplifying the deployment of that code. It
builds on and complements a variety of nascent and ongoing
projects in the cloud space.

Operate First started as a segment of the Mass Open Cloud (MOC;
massopen.cloud) called the zero cluster, a production cloud set up to
host projects and developers seeking to operate first. Announced in
2014, the MOC is a production public cloud based on the model of
an Open Cloud Exchange (OCX). In this model, many stakeholders,
rather than just a single provider, participate in implementing and
operating the cloud.

In addition to the MOC, Operate First is closely associated with
various overlapping initiatives, including OpenInfra Labs (under
the Open Infrastructure Foundation; openinfralabs.org) and the Red
Hat Collaboratory at Boston University.

OpenInfra Labs hosts the Telemetry Working Group
(openinfralabs.org/telemetry), one of the working groups included
under the Operate First umbrella. Observability of infrastructure
has become an increasingly hot topic given the challenge of reliably
operating distributed systems such as those in Kubernetes
environments. The term can cover a lot of ground, but a typical
definition of observability spans metrics, tracing, and logging.
Monitoring is often considered something distinct, but it’s also at
least closely related. A key part of observability is the automatic
collection and transmission of data about the system. In other

73

FROM POTS AND VATS TO PROGRAMS AND APPS

words, telemetry. Telemetry is an integral component of Operate
First.

The development of a community around Operate First is still in its
early stages as of this writing. A primary goal of that development
is recognizing that there are many constituencies with disparate
concerns and motivations. The Operate First founders want to
engage with them in a manner and through a path that those
constituencies prefer.

To start this process, community leaders conducted a series of
interviews with a variety of different stakeholders: developers,
quality engineering (QE), site reliability engineers (SRE), traditional
system admins, data scientists, and others. The objective here was
two-fold. First, it was important to understand, for each role, their
most pressing day-to-day concerns, what motivated them, how they
measured success, and what would make Operate First of interest to
them. Second, to keep things simple, identifying and combining
roles that largely shared motivations and concerns made it easier to
focus engagement efforts.

Quality engineers who write testing frameworks and tests have an
increasing amount of overlap with more traditional developers of
applications and other code. Both are motivated by improving
customer and internal user experiences, especially when doing so
involves solving novel problems. They measure success with
metrics such as satisfaction of and adoption by their constituencies
as well as productivity and code quality metrics. Operate First
serves these goals by encouraging and enabling software design
that builds in operational capabilities while keeping the person who
needs to operate the software in mind.

From an operational perspective, the focus is shifting away from
traditional sysadmin roles that deal mainly with maintaining and

74

FROM POTS AND VATS TO PROGRAMS AND APPS

upgrading hardware and software infrastructure using tools like
scripts and configuration management. While those tasks continue,
site reliability engineers (SREs) spend a significant amount of time
on development tasks such as adding new features, improving
scalability, and automating. SREs interact extensively with cloud
APIs, whether on premises or in a public cloud. SREs aim to do
more with less; the ratio of SREs to the number of managed clusters
is one important metric, as is their uptime.

In addition to developer and operations personas, the data
scientists and data engineers in the OpenDataHub community
have also been early adopters of Operate First. OpenDataHub is a
blueprint for building an Artificial Intelligence (AI)-as-a-Service
platform that integrates a variety of open source machine learning
tools, including Kubeflow, Ka�a, Seldon, PyTorch, and Jupyter
notebooks on Red Hat OpenShift Container Platform.

For these data-focused audiences, Operate First provides:

● A cluster to develop and run AI applications
● GitHub organizations to share and collaborate on open

source projects
● Custom image pipelines to publish reproducible

experiments
● Real production operations data for tackling machine

learning problems in AIOps

Furthermore, operating a subset of OpenDataHub at scale creates an
opportunity to document best practices, which can, in turn, be fed
into Red Hat OpenShift Data Science, the managed cloud service
offering based on OpenDataHub. Just as the open source
development model forms a virtuous cycle when working as
intended, Operate First can lead to a beneficial circle for operational
knowledge and supporting code.

75

FROM POTS AND VATS TO PROGRAMS AND APPS

The ultimate goal of Operate First is to free software users from
having to make a false choice. It brings the power of the open source
development model to operationalizing software. Fully
operationalized software is software that maintains the flexibility of
open source software that isn’t tied to a single cloud provider, while
also simplifying and improving the Day Two operations of that
software.

Portfolio architectures

Portfolio architectures document proven architectures by providing
a common process, visual language, and tool set. They effectively
“package” architectural knowledge associated with a repeatable
pa�ern that has been validated through actual real world
deployments.

Extended portfolio architecture life cycle. Source: Red Hat.

The general process for creating portfolio architectures at Red Hat is
to identify an adoption pa�ern that’s a combination of Red Hat
products and often other technologies that have been shown to be
effective in multiple customer deployments and which solve a
specific, common problem (or cluster of problems). A given
portfolio architecture consists of architecture diagrams, a slide deck
and associated video presentation, a solution brief, and blog articles.

76

FROM POTS AND VATS TO PROGRAMS AND APPS

The architectures are created using the open source diagrams.net37

tool and are publicly available on GitLab.38

High-level logical diagrams provide the overall landscape while
more detailed schematics explicitly show the relationships between
blocks.

Validated pa�erns

Validated pa�erns are a natural progression from portfolio
architectures and other reference architectures.

They contain all the code needed to help build an edge software
stack to make ge�ing to a proof of concept faster. A typical pa�ern
will include both a datacenter and one or more edge
Kubernetes-based clusters. All steps are fully automated through
GitOps processes to automate deployments consistently and at
scale. Users can then modify the pa�ern for their own specific
application. Furthermore, the associated user communicate
improvements—providing another example of the open source
development model being applied to both initial deployment and
ongoing operations of a complex, distributed software stack.

Unlike static reference architectures, the validated pa�erns are
continuously tested against current product releases so that your
deployment is kept up to date—reducing risk while using the latest
capabilities.

Validated pa�erns also consider other aspects, such as security, that
may not be part of the architecture per se but are important to
consider as part of any software deployment. For example, secrets
management and identity management are essential parts of most

38 h�ps://gitlab.com/redhatdemocentral/portfolio-architecture-examples

37 h�ps://diagrams.net

77

https://gitlab.com/redhatdemocentral/portfolio-architecture-examples
https://diagrams.net

FROM POTS AND VATS TO PROGRAMS AND APPS

complex deployments but are often left off of “marketectures” or
even reference architectures in order to focus on the essential
elements.

Managed services

But the choice doesn’t have to be between running software
on-prem or buying into a given cloud provider’s native services—a
choice that may not make it easy to migrate or replicate an
application on a different cloud provider’s platform. You also have
the option of consuming services that someone else is integrating,
operating, and delivering for you. And, with open source
technologies, you can have a consistent experience across hybrid
cloud environments.

If we focus on developers, they ultimately just want infrastructure
and services that they can consume as needed. Is there a reasonable
way to give them what they want without needing to operate their
own platforms? There is.

Red Hat Director of Product Marketing, Managed Application
Services Coco Jaenicke puts it this way:

Managed cloud services—functionality that is hosted and
managed in the cloud—provide a clean separation of the
service’s features and effort that goes into administering the
service. They provide the best of both worlds if you are looking
at them through the lens of a development team under
pressure—they provide the technology you want with none of
the hassles of acquiring hardware, managing uptime, or
updating software...

Another persona that is very interested in cloud services is
anybody who's leading the business unit, the line of business,
the person who is focused on delivering business outcomes and

78

FROM POTS AND VATS TO PROGRAMS AND APPS

ge�ing apps to market so that they can offer more to their
customers. They're going to see cloud services as a way to up the
velocity, get there faster and spend resources on building
business applications, not on supporting infrastructure.

The distinction between on-prem platforms and managed services
isn’t just that you don’t need your own site reliability engineer to be
on pager duty in case the platform breaks. It’s also that someone
with experience, the provider of the service, has made choices about
how, not only a service component, say, a message broker like
Ka�a gets configured and started. That someone also chooses how
all the other components that Ka�a needs to run get configured and
started as well. (Ka�a enables applications, systems, and services to
communicate with each other and exchange information. But the
specifics aren’t important to this example.)

Those who have used Apache Ka�a know that you need more than
just the broker to build applications. You need interfaces, metrics,
monitoring, discovery, connectors and more. A Ka�a managed
service will have made (informed) decisions about which projects to
include and how. This delivers a curated Ka�a experience that
makes Ka�a much easier and more efficient to use.

Technologies like operators can simplify some of this on-prem but
it’s still more like driving a stick shift than an automatic.

At the same time, unlike many services native to a specific cloud
provider, open source managed services can be delivered across a
number of different cloud providers. A company can also decide to
run the same software on-prem if they decide they need more
flexibility to meet some unusual requirement.

Ultimately it comes down to choice and what tradeoffs a given
technology consumer wants to make.

79

FROM POTS AND VATS TO PROGRAMS AND APPS

Improving the overall experience

So far we’ve been primarily discussing aspects of packaging
physical goods and software that are primarily functional. How do
we use packaging to sell and deliver a useful product? How do we
protect that product? How do we use it? These are table stakes
really—the minimum needed to put a product in the hands of a
customer and have it be useful.

With this as a starting point, we now move into the realm of the
experiential. There was less to be said about software here until
recently. This is partly because, for much of its history, computer
software was a utilitarian business tool. But it’s also because
consumer goods had a good century head start in the packaging
game. Packaging features that have long been recognized as
important parts of how consumers buy and use products have only
recently gained serious a�ention in the software world.

80

FROM POTS AND VATS TO PROGRAMS AND APPS

Inform

We begin by turning the discussion to how packaging informs. This
is inevitably wrapped up with the broader ways in which packaging
communicates and even becomes part of how people think about,
feel about, and use a product. But we’ll start with those aspects of
communication that are most about communicating facts rather
than building more subjective experiences.

Informational packaging was originally pre�y bare-bones. A bag
might have “flour” printed on it or a soap wrapper the
manufacturer’s name.

General store in US c. 1900. Note the relatively limited amount of labeling.

81

FROM POTS AND VATS TO PROGRAMS AND APPS

The object being sold might have been expected to do its own
communicating. This largely remains the case at a farmers market,
produce section, or butcher today. A price is likely on display and
there may be a sign telling you the variety of tomato or cut of meat
on offer. But not much else.

Historically, selling was also largely an interactive exchange
between a buyer and a seller. A bazaar is the classic example, but
even a nineteenth century general store usually involved a customer
asking for and receiving goods through an intermediary, the
shopkeeper. To the extent that buyers needed additional
information, they asked.

This model began to change in the early twentieth century.

The shift to self-service

Piggly Wiggly, founded in 1916 in Memphis, Tennessee by Clarence
Saunders, is often credited with being the first true self-service
grocery store. At the time of its founding, grocery stores did not
allow their customers to gather their own goods. Instead, a
customer would give a list of items to a clerk, who would then go
through the store himself, gathering them. Piggly Wiggly
introduced the innovation of allowing customers to gather their
own goods. This cut costs, allowing for lower prices.39

Chain store retail was taking off during the same general period
with the Great Atlantic and Pacific Tea Company (later A&P),
established in 1859, and other small, regional players including
Piggly Wiggly. In the late 1930s, A&P began consolidating its
thousands of small stores into larger supermarkets, often replacing
as many as five or six stores with one large, new one. Similar
transformations occurred among all the major players; in fact, most

39 h�p://www.groceteria.com/about/a-quick-history-of-the-supermarket/
82

http://www.groceteria.com/about/a-quick-history-of-the-supermarket/

FROM POTS AND VATS TO PROGRAMS AND APPS

national chains of the time saw their store counts peak around 1935
and then decline sharply through consolidation. This consolidation
coincided with the introduction of self-service at A&P in 1936.

Compare photographs of food stores or general stores before and
after self-service and the difference is striking. In the after photos,
the boxes and cans are designed to grab the consumer’s a�ention
both graphically and with information about their content.

A&P, 246 Third Avenue, Manha�an, 1936. Note the prominent ads for A&P's private
brands. Source: Wikimedia, released into the public domain by the New York Public
Library.

83

FROM POTS AND VATS TO PROGRAMS AND APPS

Of course, it helps if the information being communicated is true.

For example, a patent medicine like Hunt’s Remedy presented itself
as the “Great Kidney and Liver Medicine” that “cures dropsy and
all diseases of the kidney, bladder, and urinary organs.” It was
“never known to fail.” Norman’s Snake Oil liniment promised
“instantaneous relief” and to cure “all aches and pains with the
strength of a thousand snakes.”

The Pure Food and Drug Act of 1906 was the first in a series of
consumer protection laws enacted by the US Congress in the
twentieth century; it led to the creation of the Food and Drug
Administration. Among other purposes the law was intended to
ban mislabeled food and drug products. It also required that active
ingredients be placed on the label of a drug’s packaging and that
drugs could not fall below established purity levels.

84

FROM POTS AND VATS TO PROGRAMS AND APPS

However, in United States v. Johnson in 1911, the United States
Supreme Court ruled that the misbranding provisions of the Pure
Food and Drug Act of 1906 did not pertain to false curative or
therapeutic statements; rather, it only prohibited false statements as
to the identity of the drug. Congress responded in 1912 with the
Sherley Amendments, which prohibited false and fraudulent claims
of health benefits.

In their own way, computer software products have often made
almost equally outrageous promises. Given that, in theory, missing
functionality is just an update away, it can be tempting to make
claims that reflect aspirations rather than reality. Furthermore,
especially before the widespread use of open source made it easier
to test and examine software, it could also be expensive and
time-consuming to figure out if products worked as advertised.

A familiar example of government-mandated information on
packaging today is the nutrition facts label. In the US, this was
mandated by the Food and Drug Administration in 1990. In
addition to the nutrition label, products may also display certain
nutrition information or health claims on packaging. These health
claims are only allowed by the FDA for eight diet and health
relationships based on proven scientific evidence.

Packaging can also convey information about what a product is
used for, how to use it (and how not to use it!), claims relative to
other products, and which other products from the company you
might like to use with this one.

Take, for example, a box of Barilla spaghe�i si�ing on a shelf. One
panel tells us how to “get the best from your pasta, cooking the
Italian way” in three steps. Another panel tells us what’s inside and
the net weight of the contents. The flip side advertises claims such
as “part of a healthy diet” and “non-GMO ingredients.” A stamp

85

FROM POTS AND VATS TO PROGRAMS AND APPS

informs that the contents of this box are best used by January 2022
and includes some identifying information that is probably relevant
to the company for recalls and other purposes.

Typical canned food label showing branding, informational content, instructions,
ingredients, nutrition facts label, and UPC.

In years past, we’d also expect to have seen some part of a
human-readable price label added by a retailer. Today, though, that
information is often on the shelf rather than the individual box or
can.

In part, that’s because there’s now a barcode. This is still
information, of course. But it’s information that is used as part of the
retail system rather than by the consumer directly.

As Margalit Fox wrote in The New York Times in 2011: “On a
summer morning in 1974, a man in Ohio bought a package of
chewing gum and the whole world changed. At 8:01 a.m. on June 26
of that year, a 10-pack of Wrigley’s Juicy Fruit gum slid down a
conveyor belt and past an optical scanner. The scanner beeped, and
the cash register understood, faithfully ringing up 67 cents. That
purchase, at a Marsh Supermarket in Troy, Ohio, was the first

86

FROM POTS AND VATS TO PROGRAMS AND APPS

anywhere to be rung up using a barcode.” (To be a bit more precise,
this was the first commercial use of the Universal Product Code
(UPC) specifically.)

Software packaging can be directly informational as well whether
the information is for a human looking at a package or packaging
system or (as is increasingly the case), it’s in a form that can be
interpreted and acted upon by the software itself.

The trivial example of human-readable information in software
packaging comes from shrink-wrapped software boxes. A typical
box would tell you what sort of computer the software was wri�en
for and minimum specs for the hardware and operating system. The
relatively expensive boxed software of the early microcomputer era
would also throw in manuals, reference cards, and other content
that would help people use the program stored on the enclosed
diske�es. Early PC software boxes were often designed to stand out
from the competition but, over time, retailer demands led to more
standardized sizes and shapes.

87

FROM POTS AND VATS TO PROGRAMS AND APPS

Be�er information through bits

However, the more interesting discussion concerns how the bits
themselves can be packaged to convey information describing the
software, what’s needed to run it, and how to install it. The trend
over time has been to make software more self-contained and enable
the informational content to take direct action rather than simply
being a set of instructions for a human to follow.

An early step down this path is the archive utilities that have existed
in many operating systems. In the Unix world, the best known is
tar, an archive format that collects files, directories, and other file
system objects into a single stream of bytes, which can then be
wri�en out as a structured set of files. The tar utility (as mentioned
earlier in the context of container layers) was first introduced in the
Seventh Edition of Unix in January 1979, replacing the tp program.
Like most other archive utilities, tar could also compress the
contents of the archive, thereby reducing the amount of disk space
required to store it and the time needed to transmit it over a phone
line or network.

In the PC world, the first widely-known and used archive utility to
also compress files was ARC, wri�en by Thom Henderson of
System Enhancement Associates (SEA) in 1985. ARC was especially
popular on hobbyist bulletin board systems (BBS), both because it
packaged all the files associated with a program into one download
and because compression reduced the time needed to download
files using modems on telephone lines that could only transmit a
few hundred characters per second. A few years later, after a nasty
and controversial lawsuit, ARC largely gave way to PKWare’s ZIP
format, developed by Philip Ka� using some of SEA’s code, which
had been made public but not under an open source license. The
ZIP format remains in wide use today although programs are more
likely to be packaged up in different ways, as we shall see.

88

FROM POTS AND VATS TO PROGRAMS AND APPS

Archive utilities were fine as far as they went. They put all the
necessary files in one place and then transferred them to disk in a
structured way so that they were laid down in a way the main
program expected when it was run. For example, they might place
documentation in a specific directory rather than pu�ing all of a
program’s files in a big jumble. However, unpacking an archive did
nothing to customize the installation for a particular system or a
particular user. That required an installer.

Installers and package managers

Installers have often been one-off affairs. There’s been some
standardization within various operating systems. But installers
have often failed to provide a consistent experience when loading a
program onto a system, a consistent way to determine and load the
software on which a program depended, or a consistent way to
update a program over time. Traditional installers were (and are)
often something of a hack.

Package managers were the response, mostly on systems running
Linux, to automate the process of installing, upgrading, configuring,
and removing programs in a consistent manner. Originally wri�en
by Red Hat’s Erik Troan and Marc Ewing in 1997, RPM is an early
example. Other examples include yum, and its successor DNF, for
RPM-based distributions,40 and apt, for Debian-based distributions
like Ubuntu.

DNF can resolve dependencies and perform other checks on
package installations (as can apt). When DNF finds dependencies
that are not installed it can source those dependencies from an
online repository (“repo”) and install them before installing the
desired package.
40 RPM is itself technically a package manager but yum and DNF build on it to
provide more sophisticated package management features such as resolving
dependencies and taking the appropriate actions in response.

89

FROM POTS AND VATS TO PROGRAMS AND APPS

To their detriment, neither Microsoft Windows nor MacOS ever
introduced a package manager although others have wri�en
package managers for MacOS. (Most notably, Homebrew. Because
MacOS is built on a BSD Unix foundation, it’s amenable to package
management in the Linux vein.)

Today, mobile app stores such as Apple’s can also be thought of as a
form of package management although they’re based on a very
different model that is conceptually more related to containers.41

Package managers were and continue to be an extremely useful tool
for managing Linux systems. But with the availability of both
container technology and new approaches to configuration
management, it’s now possible to embed information that makes
installing and running software an even more consistent and more
automated experience.

Dockerfiles

The revolution that the docker project originally brought to the
container technology space was largely in two areas. First, as
mentioned earlier, docker created the de facto standards for the
runtime and layered image format that were later rolled into OCI.

The docker project also contributed the notion of a Dockerfile and a
comprehensive CLI to interact with it. A Dockerfile describes how
you would build a new image using a series of commands.

In this way, information needed to run an application or service can
be embedded into a container together with the minimum software
layers that they need to perform a task.

41 Containers effectively act as a form of application virtualization, which was an
area of active development in the aughts but never really gelled as a mainstream
concept.

90

FROM POTS AND VATS TO PROGRAMS AND APPS

Configuration management and playbooks

Once you move into highly automated and highly scalable CI/CD
environments, efficiency and velocity become especially important.
So long as container image and runtime requirements are met,
organizations have a lot of flexibility to pick technologies that meet
efficiency and velocity and security requirements—without losing
the benefits of standardized containers.

Automation and the delivery of complete applications to computer
systems didn’t start with containers nor does it end there today. As
my former colleague Mark Lamourine said in a podcast:42

It started out when I was the young cub sysadmin, we'd have a
set of manual procedures that started out as things in our head:
Set the network, set resolv.conf, set the hostname, make sure
time services were running.

When you only had a short list of these things, it wasn't really a
big deal. You'd go to each machine, you'd spend 15 minutes
making it fit into your network, and then you'd hand it off to
some developer or user.

Over time, we realized that we were doing an awful lot of this
and we were hiring lots of people to do this, so we needed to
write scripts to do it. Eventually, people started writing
configuration management systems, starting with Mark
Burgess and CFEngine.

The idea was that we were doing these tasks manually. We
started automating them, but we were automating them in a
custom way.

42

h�p://bitmason.blogspot.com/2015/02/podcast-configuration-manangement-with.ht
ml

91

http://bitmason.blogspot.com/2015/02/podcast-configuration-manangement-with.html
http://bitmason.blogspot.com/2015/02/podcast-configuration-manangement-with.html

FROM POTS AND VATS TO PROGRAMS AND APPS

Then people recognized pa�erns and said, “We can do this.
There's a pa�ern here that we can automate, that we can take
one step higher.” That led to these various systems which
would make your machines work a certain way.

Over time the configuration management space evolved with
different systems following different philosophies and becoming
tailored to the approaches of different types of users.

More fundamentally, there’s been something of a shift away from
traditional configuration management tools—although they’re still
widely used. This stems, in part, from the growing scale of many
software deployments. The shift from monolithic applications that
are long-lived and monolithic to short-lived microservices, as we
discussed earlier, is another important factor.

One example of a more modern approach to automation is provided
by Ansible, which has become extremely popular. It’s popular for a
variety of reasons, not least of which is that it’s easy to get
productive quickly.

It’s a simple IT automation engine that automates cloud
provisioning, configuration management, application deployment,
intra-service orchestration, and many other IT needs.

Designed for multi-tier deployments, Ansible models an IT
infrastructure by describing how all of the systems interrelate,
rather than just managing one system at a time.

It uses no agents—which is to say that Ansible does not require
installing any components on a managed host—and no additional
custom security infrastructure, so it's easy to deploy. Most
importantly, it uses a very simple language (YAML, in the form of
Ansible Playbooks) that allows automation jobs to be described in a
way that approaches plain English. Ansible’s playbooks provide a

92

FROM POTS AND VATS TO PROGRAMS AND APPS

language to describe the policy for successful configuration and
deployment of remote systems. In this way, a playbook can be used
to configure and deploy thousands of remote hosts at the click of a
bu�on.

Ansible also provides a mechanism to evaluate the success or failure
of a particular task in the playbook. A failed task can result in the
playbook halting and providing feedback to the user about which
host failed. In this way a playbook can enforce a policy (such as who
has access to an application) across multiple hosts.

Ansible fits naturally into a Kubernetes environment. Standard
Ansible tooling can automate and orchestrate applications across
both new and existing platforms allowing teams to transition
without having to learn new skills. With the k8s module, an Ansible
user can manage applications on Kubernetes, on existing IT, or
across both with one simple language.

With respect to modern packaging, this shows how, thanks to
standardization and by building on existing automation
approaches, further innovations around automation have increased
efficiency and speed even further.

While, like many terms in the general space, precise definitions can
be elusive, Infrastructure-as-Code is one common way to talk about
standardized, repeatable automation. It builds on many
configuration management, automation, and DevOps concepts but
it can be thought of as bringing new thinking to the space that’s
be�er aligned with large-scale software-defined infrastructures.

93

FROM POTS AND VATS TO PROGRAMS AND APPS

Creating an Experience

In a sense, we’ve been dancing around the edges of a central goal,
which is a be�er outcome, either from the perspective of the
consumer, the seller, or both.

But what does be�er mean?

Bundling

Some aspects of “be�er” can certainly be related to what gets sold
and how. The idea of bundling, in some respects a superset of
product packaging, is one example of this. By making the customer
an all or nothing offer, a bundle prevents a customer from picking
and choosing only the parts they want and negotiating the price of
individual line items.

We touched on this earlier in the context of products as an
integrated and curated set of parts. Auto makers have become
masters of the bundling game when it comes to options. You want
those heated leather seats? Sure. But you need to take the alloy rims
and the upgraded trim kit too.

But bundling is really a broader concept and there’s perhaps no
more canonical example historically than newspapers.

Newspapers bundle various news topics like syndicated and local
news, sports, and political reporting, along with advertising,
classifieds, weather, comic strips, shopping coupons, and more.
Many of the economic woes of the newspaper can be traced to the
spli�ing of this bundle. Craigslist took over the classifieds—and
made them mostly free. Online severed the connection between
news and local ads. While ads run online as well, the economics are
something along the lines of print dollars devalued to digital dimes.

94

FROM POTS AND VATS TO PROGRAMS AND APPS

Newspapers are a classic example of a bundle that creates a product from parts that may not
be individually viable. Source: Gordon Haff.

As NYU professor Clay Shirky wrote in 2008:43

For a long time, longer than anyone in the newspaper business
has been alive in fact, print journalism has been intertwined
with these economics. The expense of printing created an
environment where Wal-Mart was willing to subsidize the
Baghdad bureau. This wasn't because of any deep link between
advertising and reporting, nor was it about any real desire on
the part of Wal-Mart to have their marketing budget go to
international correspondents. It was just an accident.
Advertisers had li�le choice other than to have their money

43

h�ps://www.edge.org/conversation/clay_shirky-newspapers-and-thinking-the-unt
hinkable

95

https://www.edge.org/conversation/clay_shirky-newspapers-and-thinking-the-unthinkable
https://www.edge.org/conversation/clay_shirky-newspapers-and-thinking-the-unthinkable

FROM POTS AND VATS TO PROGRAMS AND APPS

used that way, since they didn't really have any other vehicle
for display ads.

Over the years, many tech companies have a�empted to force
customers to buy a bundle. Wanted phone service from the old
AT&T (and it’s not like you had a choice)? You had to rent a phone
from the local Bell operating company. You could have it in any
color you wanted so long as that color was black (but it was solidly
built).

In computer and related office equipment businesses, the bundle
was typically some combination of hardware, software, services,
and supplies. One of the primary motivations was to prevent a
competitor from cherry-picking some aspect of your business to
compete against. However, bundles also made possible less obvious
subsidies and pricing models. For example, when IBM and Xerox
tied the sale of supplies like punched cards and paper to their
leased machines, this effectively gave them a way to meter usage
and price discriminate between high volume users and low volume
ones.

Tying has played a part in a number of the tech industry’s antitrust
cases. That’s because, as in the case of the local newspaper, a
dominant position in some market greatly increases the power of a
company to enforce a bundle without worrying about what
competition might do in response.

The central issue of United States v. Microsoft in 2001 was whether
Microsoft was allowed to bundle its flagship Internet Explorer
browser software with its Microsoft Windows operating system.
Bundling them together was alleged to have been responsible for
Microsoft's then-victory in the browser wars as every Windows
system came with a copy of Internet Explorer out of the box. (The

96

FROM POTS AND VATS TO PROGRAMS AND APPS

outcome of the case was complicated but Microsoft eventually
agreed to a se�lement.)

Other examples include Data General v. Digidyne in which Data
General, then a maker of minicomputers (what we’d call servers
today), was forced to sell its RDOS operating system to Digidyne to
run on its “clone” hardware.

Most recently, there has been the ongoing squabble over digital
rights management (DRM) in printer cartridges. This is an a�empt
by printer manufacturers to limit the use of third-party ink
cartridges in their printers. This is one of the clearest examples of
cross-subsidies. Low-end printers are sold at or below cost. They’re
profitable only because of ink sales—which, of course, the
manufacturer doesn’t get if you buy someone else’s ink.

But there’s another view of bundling that ties back to product
packaging and user experience.

Bundles, like other aspects of packaging, are prescriptive. They can
be seen as a response to The Paradox of Choice, a 2004 book by
American psychologist Barry Schwar�, in which he argues that
consumers don’t seem to be benefi�ing psychologically from all
their autonomy and freedom of choice. Whether or not one accepts
Schwar�’ disputed hypothesis, it’s certainly the case that
technology options can sometimes seem to proliferate endlessly
with less and less real benefit to choosing one tech over another.

Indeed, from the perspective of a newspaper or magazine reader,
one of the advantages of certain aspects of the newspaper bundle is
that it delivers a curated news experience for one predictable price.
A limited number of publications—including The Wall Street Journal,
The New York Times, and The Economist—have demonstrated that
there’s still some market for this even in an online world.

97

FROM POTS AND VATS TO PROGRAMS AND APPS

Indeed, The New York Times, which has achieved some success with
its digital subscriptions, has experimented with new forms of
bundling. In its 25.03 issue in early 2017, Wired magazine described
how the Times has been developing new products such as Cooking,
Real Estate, and Watching as part of its Beta Group. (The acquisition
of the gadget review site Wirecu�er made for the newest product to
be brought into Beta.) Collectively, it’s a form of bundling for a
digital subscription age.

There are numerous other examples of bundles whose components
are not as a�ractive to some consumers and other users in their fully
disaggregated state.

Some bundles of financial instruments have go�en a bad rep for
good reason. In part it was poorly structured bundles of loans
known as collateralized debt obligations (CDOs) that exacerbated
the 2008 subprime mortgage crisis. The complexity of these bundles
was one factor that obscured how risky they, in fact, were.

However, bundles are ubiquitous throughout the financial industry
because they can also reduce risk or otherwise hedge against
unforeseen events. Mutual funds are bundles of individual stocks,
bonds, and other investments. They allow investors (for a fee) to
buy into a more diversified portfolio than they would otherwise be
able to. Other instruments allow airlines to hedge against fuel price
increases. (Airlines generally prefer to focus on being profitable as
an airline, not by speculating on oil prices.) Interest rate swaps can
be�er line up incoming and outgoing cash flows and minimize
certain types of market exposure, such as currency fluctuations.

Bundling can also be another aspect of delivering an integrated and
tested experience. The manufacturer of those DRMd printer
cartridges is being more than a bit disingenuous when they say that
they’re doing it for your own good. Nonetheless, having visibility

98

FROM POTS AND VATS TO PROGRAMS AND APPS

and control over the supply chain and manufacturing of all the
components that will be used together as part of a product and
process reduces the likelihood that sub-par parts will make their
way in. (Though you often pay a premium for this assurance.)

Furthermore, bundling simplifies the transaction and the support
after the transaction. To return to Clay Shirky and newspapers,
successful a la carte pricing models for unbundled short-form
writing, such as a single article or a blog post, have proven elusive.
Micropayments in the “give me a nickel to read this story” vein
have failed time and time again. Way back in 2000, Shirky argued
that this was because “users want predictable and simple pricing.
Micropayments, meanwhile, waste the users' mental effort in order
to conserve cheap resources, by creating many tiny, unpredictable
transactions. Micropayments thus create in the mind of the user
both anxiety and confusion, characteristics that users have not
heretofore been known to actively seek out.”44 This transaction cost
argument sounds a lot like the paradox of choice.

But there are no formulas for bundles and pricing. People say that
they hate being “nickeled and dimed.” Yet, they may not like that
monthly subscription bill for a service they don’t use much either.
Consumers widely grouse about cable bills that include hundreds of
channels that they never watch. Start adding up streaming services
that need to be individually paid for and lack a common interface
and people complain about that too.

The overall consumer preference does seem to favor subscriptions
for many things. Certainly, domestic mobile phone usage has
mostly moved to fixed monthly bills. Streaming music services have
come to dominate individual song or album purchases. The total bill
ma�ers of course, but the evidence suggests that, by and large,

44 h�p://www.openp2p.com/pub/a/p2p/2000/12/19/micropayments.html
99

http://www.openp2p.com/pub/a/p2p/2000/12/19/micropayments.html

FROM POTS AND VATS TO PROGRAMS AND APPS

consumers prefer the predictability of subscription billing and the
reduced need to make as many ongoing purchase decisions. They
know they can always cancel even if they often don’t. Which makes
subscriptions often a�ractive for vendors; a trial period is a good
way to capture new customers and, even when a customer doesn’t
use a subscription much, they often fail to cancel.

The situation at large end-user companies is more mixed. Most of
the major software they use have ongoing support contracts even if
they aren’t subscription products as such. Software-as-a-Service is
usually subscription in some manner, often with tiered or per-seat
pricing of some sort. However, the major public cloud providers are
mostly priced based on pay-per-use and these services like Amazon
Web Services and Microsoft Azure have become increasingly
popular.

The best we can probably say is that both individuals and
companies tend to have preferences for how they pay for a given
good. And that preference may reflect customary practice as much
as it does logic.

The unboxing experience

Ultimately, whether it’s software or something else, there’s a need
that’s being fulfilled and the packaging should be in service of that
goal. But that’s not to say that packaging is purely about ge�ing a
consumer to some goal as efficiently as possible—though that’s
certainly part of it.

Signs of the evolution of packaging from the utilitarian to the
experiential are everywhere.

Unbox a computer a couple of decades ago and, if you were lucky,
you might find a sheet of paper easily identifiable as a “Quick Start”

100

FROM POTS AND VATS TO PROGRAMS AND APPS

guide. (Which itself was an improvement over simply needing a
field engineer to swing by.)

Today the unboxing experience of consumer goods like Apple’s
iPhone has become almost a cliché, but it’s no less real for that. In
the words of Grant Wenzlau, SVP of Story at Day One Agency,
“Packaging is no longer simply about packaging the object—it is
about the unboxing experience and art directing. This is where the
process starts for designers today: you work backward from the
Instagram image to the unboxing moment to the design that serves
it.”

The idea of creating an experience around acquiring a product isn’t
new.

One of the clear antecedents in retail comes from Harry Gordon
Selfridge, the American retail magnate who founded the
London-based department store Selfridges.

Selfridge promoted the notion of shopping for pleasure rather than
necessity (at his Oxford Street store of course.) As Erika Rappaport
writes: “Gordon Selfridge marketed his new store by promoting
shopping as a delightful and respectable middle-class female
pastime… In writing about the store’s opening, [one] paper’s
reporter loudly proclaimed that, at Selfridges, ‘Shopping’ had
become an ‘Amusement.’ Whether imagined as an absolute need, a
luxurious treat, a housewife’s duty, or a feminist demand, shopping
was always a pleasure.”45

Selfridges housed elegant restaurants with modest prices, a library,
reading and writing rooms, special reception rooms for French,
German, American and "Colonial" customers, a First Aid Room, and
a Silence Room, with soft lights, deep chairs, and double-glazing, all

45 The Gender and Consumer Culture Reader
101

FROM POTS AND VATS TO PROGRAMS AND APPS

intended to keep customers in the store for as long as possible. Staff
members were taught to be on hand to assist customers, but not too
aggressively, and to sell the merchandise.46

A Selfridges Christmas display. Shopping as experience. Source: Selfridges.

Over time, the idea of thinking about user experience more broadly
took hold. One could point to Frederick Winslow Taylor’s early
twentieth century research into how workers interact with their
tools as a precursor to the science behind how we think about user
experience today. Peter Drucker, who once graced the cover of
Business Week as “the man who invented management,” wrote that
Taylor “was the first man in recorded history who deemed work
deserving of systematic observation and study. On Taylor's
‘scientific management’ rests, above all, the tremendous surge of
affluence in the last seventy-five years which has lifted the working
masses in the developed countries well above any level recorded
before, even for the well-to-do.”

46 h�ps://en.wikipedia.org/wiki/Harry_Gordon_Selfridge
102

https://en.wikipedia.org/wiki/Harry_Gordon_Selfridge

FROM POTS AND VATS TO PROGRAMS AND APPS

Beyond interfaces to experiences

The modern focus on user experience is often connected to Donald
Norman whose 1986 The Design of Everyday Things is a classic of the
field. However, Norman himself says that early user experience
thinking was too narrow in scope. In the expanded 2013 edition of
his earlier book, he writes: “The first edition of the book focused
upon making products understandable and usable. The total
experience of a product covers much more than its usability:
aesthetics, pleasure, and fun play critically important roles. There
was no discussion of pleasure, enjoyment, or emotion. Emotion is so
important that I wrote an entire book, Emotional Design, about the
role it plays in design.”

Software has a (deserved) reputation for historically paying scant
heed to usability. But especially once graphical user interfaces
became widespread, designers started paying more a�ention to user
interface (UI) design and then user experience (UX) more broadly.

One can even observe the evolution from UI to UX through the lens
of book titles. In 1992, Bruce Tognazzini, then Human Interface
Evangelist at Apple, published Tog on Interface which mostly
focused on things like user learning curves and interface
consistency. By fifteen years later, Bill Buxton of Microsoft was
publishing Sketching User Experiences, which focuses on higher-level
a�ributes:

Despite the technocratic and materialistic bias of our culture, it
is ultimately experiences that we are designing, not things. Yes,
physical objects are often the most tangible and visible
outcomes of design, but their primary function is to engage us
in an experience—an experience that is largely shaped by the
affordances and character embedded into the product itself.

103

FROM POTS AND VATS TO PROGRAMS AND APPS

Obviously, aesthetics and functionality play an important role
in all of this.

Part of this experience is rooted in how easily software is acquired,
prepared for use, and operated for however long it’s needed. As
analyst Stephen O’Grady wrote in his 2012 post “Do Not
Underestimate the Power of Convenience:”47

One of the biggest challenges for vendors built around
traditional procurement pa�erns is their tendency to
undervalue convenience. Developers, in general, respond to
very different incentives than do their executive purchasing
counterparts. Where organizational buyers tend to be less price
sensitive and more focused on issues relating to reliability and
manageability, as one example, individual developers tend to
be more concerned with cost and availability—convenience, in
other words.

47 h�p://redmonk.com/sogrady/2012/12/19/convenience/
104

http://redmonk.com/sogrady/2012/12/19/convenience/

FROM POTS AND VATS TO PROGRAMS AND APPS

Open source: A vision for the future

Ultimately, open source managed services, an approach like
Operate First, and associated tools such as operators are ingredients
to help open source thrive in a world where large cloud providers
often dominate. Open source can do so by overcoming key
challenges.

Simplicity is a challenge because it runs counter to developer and,
especially open source developer, instincts to offer more choices,
more options. It runs counter to a preference to let users select
among alternatives in a sort of Darwinian free-for-all. How many
desktop environments are available for Linux again?

Simplicity doesn’t come naturally to open source. There’s usually no
central authority carving out unnecessary features and holding firm
to a streamlined architectural vision.

Simplicity isn’t inherent in all cloud options either. At this point
navigating the Amazon Web Services catalog of services is a
daunting task. But, to the degree that open source software projects
can simplify installation, simplify configuration, and simplify
ongoing operations, they’ll see even more adoption. Containers and
automation tools such as Ansible are making great strides to
abstract away a lot of the complexity around software provisioning
and configuration.

Integration has been one of the biggest challenges to adopting open
source software over time. Tight integration would seem to fly in
the face of an ethos of independence from specific technology tracks
and specific vendors.

But it’s not a binary choice.

105

FROM POTS AND VATS TO PROGRAMS AND APPS

Consider the technological innovation happening around containers
and DevSecOps. On the one hand, this creates enormous
possibilities for new types of applications running on a dynamic
and flexible platform. And this continues to happen. But it doesn’t
preclude also having an integrated (but extensible) container
platform.

And for many organizations, channeling and packaging the rapid
change happening across a plethora of open source projects isn’t
easy—and can end up being a distraction from the ultimate
business goals. With container formats, runtimes, and orchestration
increasingly standardized through the OCI and CNCF (where
Kubernetes is hosted), there’s increasing interest from many ops
teams in deploying a tested and integrated bundle of these
technologies.

If you consider the differences between perceptions about open
source as it was starting to become important to businesses and
today, one of the big changes is confidence around open source
security, support, and reliability. Much of this was, in fact, often not
hard to find early on but it was at best patchy. The confidence
provided by enterprise open source packaging is one aspect that has
led to the shift in perception.

This shift comes from how the open development model allows
entire industries to agree on standards and encourages their
brightest developers to continually test and improve technology.
Developing software in collaboration with users from a range of
industries, including government and financial services, provides
valuable feedback that guides security-related discussions and
product feature implementations. Collaborating with communities
to solve problems is the future.

106

FROM POTS AND VATS TO PROGRAMS AND APPS

This collaboration brings additional benefits. As Paul Cormier, the
CEO of Red Hat, wrote:48

This commitment to contribution translates to knowledge,
leadership, and influence in the communities we participate in.
This then translates directly to the value we are able to provide
to customers. When customers encounter a critical issue, we are
as likely as anyone to employ the developers who can fix it.
When customers request new features or identify new use
cases, we work with the relevant communities to drive and
champion those requests. When customers or partners want to
become contributors themselves, we even encourage and help
guide their contributions.

Open source software suppliers also put a wide range of processes
and services in place to further enhance confidence in open source
software. Modern security means shifting from a strategy that is
built around minimizing change to one that is optimized for change.

Enterprise open source software also requires code review and
testing methodologies, a supply chain that’s secured by digitally
signing all released packages and distributing them through secure
channels, and a dedicated product security team (such as we
maintain at Red Hat) that analyzes threats and vulnerabilities
against all our products every day and provides relevant advice and
updates.

Finally, Experience is where the rubber hits the road. Everything
comes down to delivering an experience through the software and
the way in which it is packaged.

Open source brings freedom. Open source brings flexibility. Open
source brings choice. Open source brings independence.

48 h�ps://www.redhat.com/en/about/blog/what-makes-us-red-hat
107

https://www.redhat.com/en/about/blog/what-makes-us-red-hat

FROM POTS AND VATS TO PROGRAMS AND APPS

But open source participants also must keep their eyes on delivering
those a�ributes to users with the minimum of friction. This means
moving beyond thinking about software in the traditional
sense—and instead enabling the streamlined delivery of digital
services.

The innovation taking place in cloud-native development today
provides many options to make this approach a reality. And the
open source development model has proven to be hugely
successful. But there remains the need to focus on and embrace
packaging principles to deliver a simplified and enhanced user
experience. A be�er experience.

108

FROM POTS AND VATS TO PROGRAMS AND APPS

109

